Journal of Failure Analysis and Prevention

, Volume 17, Issue 5, pp 882–889 | Cite as

Microstructural Evolution of P92 Steel During Long-Term Aging

  • Ning Sun
  • Yong Jiang
  • XiaoXiang Weng
  • JianMing Gong
Technical Article---Peer-Reviewed


The mechanical properties and microstructure evolution of P92 steel were investigated after aging up to 11,000 h at 923 K. Charpy impact and tensile tests were carried out to study the strength and ductility of aged P92 steel. In addition, microstructure evolution of the samples during long-term aging was investigated with X-ray diffraction, optical microscopy and scanning electron microscope (SEM). Then, statistical quantitative image analysis based on SEM images was used to evaluate the precipitation during long-term aging. The mechanical properties were found to be associated with the evolution of precipitation, especially the coarsening of Laves-phase. Results show that the ductility and strength of P92 steel decrease with the growth of Laves-phase during short-term aging (shorter than 1000 h). However, as the aging time further increasing, the ductility and strength of P92 steel decrease slowly with the coarsening of Laves-phase.


Aging Laves-phase Precipitation and coarsening Mechanical property 



The authors gratefully acknowledge the support provided by innovation program for graduate students in Jiangsu Province of China (No. KYLX15_0800).


  1. 1.
    T. Tokairin, K.V. Dahl, H.K. Danielsen, F.B. Grumsen, T. Sato, J. Hald. Mater. Sci. Eng. A 565, 285 (2013)CrossRefGoogle Scholar
  2. 2.
    P.J. Ennis, A. Czyrska-Filemonowicz, Inżynieria Materiałowa 22(4), 454 (2001)Google Scholar
  3. 3.
    A. Výrostková, V. Homolova, J. Pecha, M. Svoboda, Mater. Sci. Eng., A 480, 289 (2008)CrossRefGoogle Scholar
  4. 4.
    H.K. Danielsen, J. Hald, Mater. Sci. Eng., A 505, 169 (2009)CrossRefGoogle Scholar
  5. 5.
    T. Sakthivel, K. Laha, P. Parameswaran, S. Panneer Selvi, K.S. Chandravathi, M.D. Mathew, Trans. Indian Inst. Met. 68, 411 (2015)CrossRefGoogle Scholar
  6. 6.
    X.F. Guo, J.M. Gong, Y. Jiang, D.S. Rong, Mater. Sci. Eng., A 564, 199 (2013)CrossRefGoogle Scholar
  7. 7.
    J.S. Lee, H.G. Armaki, K. Maruyama, T. Muraki, H. Asahi, Mater. Sci. Eng., A 428, 270 (2006)CrossRefGoogle Scholar
  8. 8.
    K. Sawada, M. Takeda, K. Maruyanma, R. Ishii, M. Yamada, Y. Nagae, R. Komine, Mater. Sci. Eng., A 267, 19 (1999)CrossRefGoogle Scholar
  9. 9.
    D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys (Van Nostrand Reinhold Co. Ltd., New York, 1981), p. 326Google Scholar
  10. 10.
    C.G. Panait, W. Bendick, A. Fuchsmann, Int. J. Press. Vessels Pip. 87, 326 (2010)CrossRefGoogle Scholar
  11. 11.
    A. Aghajani, C. Somsen, G. Eggeler, Acta Mater. 57, 5093 (2009)CrossRefGoogle Scholar
  12. 12.
    F. Abe, H. Araki, T. Noda, Metall. Mater. Trans. A 22, 2225 (1991)CrossRefGoogle Scholar
  13. 13.
    M.D. Bhandarkar, M.S. Bhat, E.R. Parker, Metall. Trans. A 7, 753 (1976)CrossRefGoogle Scholar
  14. 14.
    G. Dimmler, P. Weinert, E. Kozeschnik et al., Quantification of the Laves phase in advanced 9–12% Cr steels using a standard SEM. Mater. Charact. 51(5), 341–352 (2003)CrossRefGoogle Scholar
  15. 15.
    Q.L. Yong, Secondary Phase in Steels (Metallurgical Industry Press, Beijing, 2006), p. 303Google Scholar
  16. 16.
    Q.L. Yong, Secondary Phase in Steels (Metallurgical Industry Press, Beijing, 2006), p. 301Google Scholar
  17. 17.
    X. Wang, Q. Xu, S.M. Yu, H. Liu, L. Hu, Y.Y. Ren, J. Mater. Process. Technol. 219, 60 (2015)CrossRefGoogle Scholar
  18. 18.
    J. Hald, J. Press. Vessel Technol. 85, 30 (2008)CrossRefGoogle Scholar
  19. 19.
    Å. Gustafson, M. Hättestrand, Coarsening of precipitates in an advanced creep resistant 9% chromium steel—quantitative microscopy and simulations. Mater. Sci. Eng., A 333(1), 279–286 (2002)CrossRefGoogle Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • Ning Sun
    • 1
    • 2
  • Yong Jiang
    • 1
    • 2
  • XiaoXiang Weng
    • 1
    • 2
  • JianMing Gong
    • 1
    • 2
  1. 1.School of Mechanical and Power EngineeringNanjing Tech UniversityNanjingChina
  2. 2.Jiangsu Key Lab of Design and Manufacture of Extreme Pressure EquipmentNanjingChina

Personalised recommendations