Journal of Failure Analysis and Prevention

, Volume 17, Issue 4, pp 672–679 | Cite as

Potentiodynamic Polarization Behavior and Pitting Corrosion Analysis of 2101 Duplex and 301 Austenitic Stainless Steel in Sulfuric Acid Concentrations

  • Roland Tolulope Loto
  • Cleophas Akintoye Loto
Technical Article---Peer-Reviewed


The corrosion behavior of 2101 duplex and 301 austenitic stainless steel in the presence of sulfate (SO4 2−) anion concentrations was investigated through polarization techniques, weight loss and optical microscopy analysis. The corrosion rates of the steels were comparable after 3M H2SO4. Results confirm that the duplex steel displayed a higher resistance to pitting corrosion than the austenitic steel. Experimental observation shows that its pitting potential depends on the concentration of the SO4 2− ions in the acid solution due to adsorption of anions at the metal-film interface. The duplex steel underwent stable pitting at relatively higher potentials and significantly higher corrosion current than the austenitic steel. The duplex steel exhibited lower corrosion potential values thus less likely to polarize in the acid solution. Solution concentration had a limited influence on the polarization behavior of the austenitic steel and hence its reaction to SO4 2− ion penetration from analysis of the pitting potentials and observation of its narrower polarization scans compared to the duplex steel which showed wide scatter over the potential domain with changes in concentration.


Pitting Corrosion Steel Acid Polarization 


  1. 1.
    D.E. Williams, M.R. Kilburn, J. Cliff, G.I.N. Waterhouse, Composition changes around sulphide inclusions in stainless steels, and implications for the initiation of pitting corrosion. Corros. Sci. 52, 3702–3716 (2010)CrossRefGoogle Scholar
  2. 2.
    D.A. Jones, Principles and Prevention of Corrosion (Macmillan Publishing Company, New York, 1992), p. 208Google Scholar
  3. 3.
    R.W. Revie, H.H. Uhlig, Corrosion and Corrosion Control (Wiley, New Jersey, 2008)CrossRefGoogle Scholar
  4. 4.
    P.C. Pistorius, G.T. Burstein, Metastable pitting corrosion of stainless steel and the transition to stability. Philos. Trans.: Phys. Sci. Eng. 341, 531–559 (1992)Google Scholar
  5. 5.
    P.C. Pistorius, G.T. Burstein, Growth of corrosion pits on stainless steel in chloride solution containing dilute sulphate. Corros. Sci. 33, 1885–1897 (1992)CrossRefGoogle Scholar
  6. 6.
    P. Ernst, N.J. Laycock, M.H. Moayed, R.C. Newman, The mechanism of lacy cover formation in pitting. Corros. Sci. 39, 1133–1136 (1997)CrossRefGoogle Scholar
  7. 7.
    N.J. Laycock, R.C. Newman, Temperature dependence of pitting potentials for austenitic stainless steels above their critical pitting temperature. Corros. Sci. 40, 887–902 (1998)CrossRefGoogle Scholar
  8. 8.
    J. Soltis, Passivity breakdown, pit initiation and propagation of pits in metallic materials—review. Corros. Sci. 90, 5–22 (2015)CrossRefGoogle Scholar
  9. 9.
    ASTM G1 - 03(2011) Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens. Retrieved 30 May 2016
  10. 10.
    ASTM G59 - 97(2014) Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements. Retrieved 30 May 2016
  11. 11.
    ASTM G102 - 89(2015)e1 Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements. Retrieved 30 May 2016
  12. 12.
    Y. Choi, S. Nesic, S. Ling, Effect of H2S on the CO2 corrosion of carbon steel in acidic solutions. Electrochim. Acta 56, 1752–1760 (2011)CrossRefGoogle Scholar
  13. 13.
    ASTM NACE/ASTMG31 - 12a (2012) Standard Guide for Laboratory Immersion Corrosion Testing of Metals. Retrieved 05 May 2016
  14. 14.
    P. Venkatesan, B. Anand, P. Matheswaran, Influence of formazan derivatives on corrosion inhibition of mild steel in hydrochloric acid medium. Eur. J. Chem. 6(S1), S438–S444 (2009)Google Scholar
  15. 15.
    W.B. Jensen, The Lewis Acid-Base Concepts (Wiley, New York, 1980), pp. 112–336Google Scholar
  16. 16.
    K. Fushimi, M. Seo, Initiation of a local breakdown of passive film on iron due to chloride ions generated by a liquid-phase ion-gun for local breakdown. J. Electrochem. Soc. 148(11), B456–B459 (2001)CrossRefGoogle Scholar
  17. 17.
    K. Fushimi, K. Azumi, M. Seo, Use of a liquid-phase ion-gun for local breakdown of the passive film on iron. J. Electrochem. Soc. 147(2), 552–557 (2000)CrossRefGoogle Scholar
  18. 18.
    K.E. Heusler, L. Fisher, Kinetics of pit initiation at passive iron. Mater. Corros. 27(8), 551–556 (1976)CrossRefGoogle Scholar
  19. 19.
    G.L. Song, Transpassivation of Fe-Cr-Ni stainless steels. Corros. Sci. 47, 1953–1987 (2005)CrossRefGoogle Scholar
  20. 20.
    J. Kruger, Uhlig’s Corrosion Handbook R. Winstone Revie (Ed.) (Wiley, New Jersey, 2011)Google Scholar
  21. 21.
    M. Bojinov, G. Fabricius, T. Laitinen, T. Saario, Transpassivity mechanism of iron-chromium-molybdenum alloys studied by AC impedance, DC resistance and RRDE measurements. Electrochim. Acta 44, 4331–4343 (1999)CrossRefGoogle Scholar
  22. 22.
    A. Sara, Y. Yongsun, C. Pyungyeon, J. Changheui, B. Philip, Passivity breakdown of 316L stainless steel during potentiodynamic polarization in NaCl solution. Corros. Sci. 111, 720–727 (2016)CrossRefGoogle Scholar
  23. 23.
    G.S. Frankel, Pitting corrosion of metals: a review of the critical factors. J. Electrochem. Soc. 145, 2186–2198 (1998)CrossRefGoogle Scholar
  24. 24.
    H. Bohni, Breakdown of passivity and localized corrosion process. Langmuir 3(6), 924–930 (1987)CrossRefGoogle Scholar
  25. 25.
    R.T. Loto, Pitting corrosion evaluation of austenitic stainless steel type 304 in acid chloride media. J. Mater. Environ. Sci. 4(4), 448–459 (2013)Google Scholar
  26. 26.
    H.H. Uhlig, Adsorbed and reaction-product films on metals. J. Electrochem. Soc. 97, 215C–220C (1950)CrossRefGoogle Scholar
  27. 27.
    R.T. Loto, Pitting corrosion evaluation and inhibition of stainless steels: a review. J. Mater. Environ. Sci. 6(10), 2750–2762 (2015)Google Scholar
  28. 28.
    T.P. Hoar, D.C. Mears, G.P. Rothwell, The relationships between anodic passivity, brightening and pitting. Corros. Sci. 5, 279–289 (1965)CrossRefGoogle Scholar
  29. 29.
    G.S. Frankel, Pitting corrosion of metals: a review of the critical factors. J. Electrochem. Soc. 145(6), 2186–2198 (1998)CrossRefGoogle Scholar
  30. 30.
    N. Sato, A theory for breakdown of anodic oxide films on metals. Electrochim. Acta 16, 1683–1692 (1971)CrossRefGoogle Scholar
  31. 31.
    N. Sato, K. Kudo, T. Noda, The anodic oxide film on iron in neutral solution. Electrochim. Acta 16, 1909–1921 (1971)CrossRefGoogle Scholar
  32. 32.
    W. Fredriksson, S. Malmgren, T. Gustafsson, M. Gorgoi, K. Edström, Full depth profile of passive films on 316L stainless steel based on high resolution HAXPES in combination with ARXPS. Appl. Surf. Sci. 258(15), 5790–5797 (2012)CrossRefGoogle Scholar
  33. 33.
    K. Ahmad, Principles of Corrosion Engineering and Corrosion Control (Butterworth-Heinemann, Oxford, 2006)Google Scholar
  34. 34.
    J. Dong, J. Zhou, An investigation of pitting initiation mechanism of 1Cr12Ni2W1Mo1 V steel after induction hardening. J. Mater. Sci. 35, 2653–2657 (2000)CrossRefGoogle Scholar
  35. 35.
    H.H. Strehblow, P. Marcus, J. Oudar (eds.), Corrosion Mechanisms in Theory and Practice (Marcel Dekker, New York, 1995)Google Scholar
  36. 36.
    A. Bentour, S. Diamond, N.S. Berke, Steel Corrosion in Concrete (Chapman & Hall, London, 1997)Google Scholar
  37. 37.
    A.R. Brooks, C.R. Clayton, K. Doss, Y.C. Lu, On the role of Cr in the passivity of stainless steel. J. Electr. Sci. 133, 2459–2464 (1986)CrossRefGoogle Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • Roland Tolulope Loto
    • 1
    • 2
  • Cleophas Akintoye Loto
    • 1
    • 2
  1. 1.Department of Mechanical EngineeringCovenant UniversityOtaNigeria
  2. 2.Department of Chemical Metallurgical and Materials EngineeringTshwane University of TechnologyPretoriaSouth Africa

Personalised recommendations