Skip to main content
Log in

Neyman–Pearson Test for Fault Detection in the Process Dynamics

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

Fault detection in industrial plants plays an important role for ensuring the product quality, safety, and reliability of plant equipment. The purpose of this work is to propose a fault detection technique with a black-box modeling and a statistical module based on Neyman–Pearson test (NPT). In fact, Nonlinear Auto-Regressive Moving Average with eXogenous input (NARMAX) model is used to obtain a model for the normal condition operation. To detect a fault, The NPT has been applied to the residual of NARMAX model. The efficiency of the technique is illustrated through its application to monitor product quality in a distillation unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. Isermann, Trends in the application of model-based fault detection and diagnosis of technical processes. Control Eng. Pract. 5(5), 709–7191 (1997)

    Article  Google Scholar 

  2. S. Ding, Model-Based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools (Springer, Berlin, 2008)

    Google Scholar 

  3. M. Blanke, M. Kinnaert, J. Lunze, M. Staroswiecki, Diagnosis and Fault-Tolerant Control (Springer, Berlin, 2006)

    Google Scholar 

  4. Y. Chetouani, Model selection and fault detection approach based on Bayes decision theory: application to changes detection problem in a distillation column. Process. Saf. Environ. 92(3), 215–223 (2014)

    Article  Google Scholar 

  5. S. Simani, C. Fantuzzi, R. Patton, Model-Based Fault Diagnosis in Dynamic Systems Using Identification Techniques (Springer, London, 2002)

    Google Scholar 

  6. T. Raïssi, G. Videau, A. Zolghadri, Interval observer design for consistency checks of nonlinear continuous-time systems. Automatica 46(3), 518–527 (2010)

    Article  Google Scholar 

  7. X. Zhang, R. Grube, K.K. Shin, M. Salman, R.S. Conell, Parity-relation-based state-of-health monitoring of lead acid batteries for automotive applications. Control Eng. Pract. 19(6), 555–563 (2011)

    Article  Google Scholar 

  8. I.D. Landau, R. Lozano, M. M’Saad, A. Karimi, Adaptive Control: Algorithms, Analysis and Applications (Springer, London, 2011)

    Book  Google Scholar 

  9. L. Ljung, System Identification, Theory for the User (Prentice Hall Englewood Cliffs, Upper Saddle River, 1999)

    Google Scholar 

  10. S.A. Billings, Nonlinear system identification: NARMAX Methods in the time, frequency, and spatio-temporal domains (Wiley, New York, 2013)

    Book  Google Scholar 

  11. A. Akhenak, E. Duviella, B. Bako, S. Lecoeuche, Online fault diagnosis using recursive subspace identification: application to a dam-gallery open channel system. Control Eng. Pract. 21(6), 797–806 (2013)

    Article  Google Scholar 

  12. S. Nugroho, Y.Y. Nazaruddin, H.A. Tjokronegoro, Non-linear identification of aqueous ammonia binary distillation column based on simple hammerstein model. July 20–23 (Melbourne), 5th Asian. Control Conf. Proc. IEEE 1, 118–123 (2004)

    Google Scholar 

  13. Y. Zhu, Distillation column identification for control using Wiener model. June 2–4 (San Diego). Am. Control Conf. Proc. IEEE 5, 3462–3466 (1999)

    Google Scholar 

  14. Z.K. Peng, Z.Q. Langa, C. Wolters, S.A. Billings, K. Worden, Feasibility study of structural damage detection using NARMAX modelling and Nonlinear Output Frequency Response Function based analysis. Mech. Syst. Signal Process. 25(3), 1045–1061 (2011)

    Article  Google Scholar 

  15. Z. Wei, L.H. Yam, L. Cheng, NARMAX model representation and its application to damage detection for multi-layer composites. Compos. Struct. 68(1), 109–117 (2005)

    Article  Google Scholar 

  16. F. Gustafsson, Adaptive filtering and change detection (Wiley, New York, 2000)

    Google Scholar 

  17. M. Basseville, I. Nikiforov, Detection of Abrupt Changes: Theory and Application (Prentice Hall Englewood Cliffs, Upper Saddle River, 1993)

    Google Scholar 

  18. M. Barkat, Signal Detection and Estimation (Artech house, Boston, 2005)

    Google Scholar 

  19. J. Neyman, E.S. Pearson, On the problem of the most efficient tests of statistical hypotheses. Philos. T. R. Soc. Lond. 231, 289–337 (1933)

    Article  Google Scholar 

  20. N.A.A. Shashoa, G. Kvaščev, A. Marjanović, Ž. Djurović, Sensor fault detection and isolation in a thermal power plant steam separator. Control Eng. Pract. 21(7), 908–916 (2013)

    Article  Google Scholar 

  21. F. Charfi, S. Lesecq, F. Sellami, Fault diagnosis using SWT and Neyman Pearson detection tests. August 31–Sept 3 (Cargese). International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives Conference Proceeding of the IEEE, pp. 16 (2009)

  22. A. Zjajo, J.P. De Gyvez, G. Gronthoud, Structural fault modeling and fault detection through Neyman–Pearson decision criteria for analog integrated circuits. J. Electron. Test. 22(4), 399–409 (2006)

    Article  Google Scholar 

  23. F. Harrou, M.N. Nounou, H.N. Nounou, M. Madakyaru, Statistical fault detection using PCA-based GLR hypothesis testing. J. Loss Prevent. Proc. 26(1), 129–139 (2013)

    Article  Google Scholar 

  24. L. Aggoune, Y. Chetouani, H. Radjeai, Change detection in a distillation column using non-linear auto-regressive moving average with exogenous input model and Hellinger. IET Sci. Meas. Technol. 10(1), 10–17 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakhdar Aggoune.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aggoune, L., Chetouani, Y. Neyman–Pearson Test for Fault Detection in the Process Dynamics. J Fail. Anal. and Preven. 16, 999–1005 (2016). https://doi.org/10.1007/s11668-016-0186-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-016-0186-y

Keywords

Navigation