Skip to main content
Log in

Corrosion of Aluminum Alloy Metal Matrix Composites in Neutral Chloride Solutions

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

The electrochemical behavior of UNS A0332.00S, UNS A0332.20S, UNS A0359.00S, and UNS A0359.20S aluminum alloys were studied in NaCl media through weight loss, potentiodynamic, and cyclic polarization techniques. UNS A0332.20S and UNS A0359.20S were reinforced with SiC, 20% by volume while the other two samples were not reinforced. Scanning electron microscopy and energy dispersive spectroscopy were used to analyze the role of intermetallic phases in both the corroded and non-corroded aluminum alloy samples. Results showed that unreinforced alloys have lower corrosion rates compared to the reinforced alloys. Pits on the reinforced alloys were significantly more numerous, shallower, and widespread than on the monolithic alloys. Al/SiC interface particles and intermetallic phases were observed to form at the mouth of the pits especially in alloys reinforced with SiC particles which might have contributed significantly to the weakening of regions where localized corrosion occurs. The result shows that intermetallic phases may directly influence the corrosion behavior of the aluminum alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. D.M. Aylor, Metals Handbook, 9th edn. (ASM, Metal Park, OH, 1984), pp. 859–863

    Google Scholar 

  2. S.V. Nair, J.K. Tien, R.C. Bates, SiC-reinforced aluminum metal matrix composites. Int. Met. Rev. 30(6), 275–290 (1985)

    Google Scholar 

  3. D.M. Aylor, R.M. Kain, Assessing the corrosion resistance of metal matrix composite materials in marine environments, in: Recent Advances in Composites in the United States and Japan, ASTM STP 864, ed. by J.R. Vinson, M. Taya (ASTM, Philadelphia, PA, 1983), pp. 632–647.

  4. D.M. Aylor, P.J. Moran, Effect of reinforcement on the pitting behaviour of aluminum-based metal matrix composites. J. Electrochem. Soc. 132, 1277–1284 (1985)

    Article  Google Scholar 

  5. M.C. Portal, E.G. Wolff, Advances in structural composites, Paper No. AC14, presented to Society of Aerospace Materials Process Engineering, 12th National Symposium, Exhibit, Western Period, North Hollywood, CA, 1967

  6. N. Deo, T.K.G. Namboodhir, Some corrosion characteristics of aluminum-mica particulate composites. Corros. Sci. 29(10), 1215–1229 (1989)

    Article  Google Scholar 

  7. E. McCafferty, G.K. Hubler, P.M. Natishan, Naval research laboratory surface modification program: ion beam and laser processing of metal surfaces for improved corrosion resistance. Mater. Sci. Eng. 86, 1–17 (1987)

    Article  Google Scholar 

  8. P.P.M. Natishan, E. McCafferty, G.K. Hubler, The effect of pH of zero charge on the pitting potential. J. Electrochem. Soc. 133, 1061–1062 (1986)

    Article  Google Scholar 

  9. W.L. Xu, T.M. Yue, H.C. Man, C.P. Chan, Laser surface melting of aluminum alloy 6013 for improving pitting corrosion fatigue resistance. Surf. Coat. Technol. 16–17, 5077–5086 (2000)

    Google Scholar 

  10. R.M. Latanision, Corrosion resistance of rapidly quenched alloys, in: Critical Issues in Reducing the Corrosion of Steels, ed. by H. Leidheiser, S. Haruyama (NACE, Houston, TX, 1986), p. 182

  11. A.H. Al-saffar, V. Ashworth, A.K.O. Balimov, D.J. Chivers, W.A. Grant, R.P.M. Procter, The effect of molybdenum ion implantation on the general and pitting corrosion behaviour of pure aluminum and high strength aluminum alloy. Corros. Sci. 20(1), 127–144 (1980)

    Article  Google Scholar 

  12. A.J. Sedriks, J.A.S. Green, D.L. Novak, Corrosion behavior of aluminum-boron composites in aqueous chloride solutions. Met. Trans. 2(3), 871–875 (1971)

    Article  Google Scholar 

  13. M.S.H. Bhat, M.K. Surappa, Corrosion behaviour of silicon carbide particle reinforced 6061/Al alloy composites. J. Mater. Sci. 26(18), 4991–4996 (1991)

    Article  Google Scholar 

  14. P.P. Trzaskoma, Pit morphology of aluminum alloy and silicon carbide/aluminum alloymetal matrix composites. Corrosion 46(5), 402–409 (1990)

    Article  Google Scholar 

  15. J. Wu, W. Liu, P. Li, R. Wu, Effect of matrix alloying elements on the corrosion resistance of C/Al composite materials. J. Mater. Sci. Lett. 12(19), 1500–1501 (1993)

    Google Scholar 

  16. H. Sun, E.Y. Koo, H.G. Wheat, Corrosion Behavior of SiCp/6061 Al metal matrix composites. Corrosion 47(10), 741–753 (1991)

    Article  Google Scholar 

  17. R.C. Paciej, V.S. Agarwala, Influence of processing variables on the susceptibility of metal-matrix composites. Corrosion 44, 680–684 (1988)

    Article  Google Scholar 

  18. F.U. Yuechun, S.H.I. Nanlin, Z. Dezhi, Y. Rui, Microstructural changes of Ti-6Al-4V Matrix by the incorporation of continuous SIC fibers. J. Mater. Sci. Technol. 22(4), 452–454 (2006)

    Google Scholar 

  19. P.P. Trzaskoma, Proceedings on the Effects of Silicon Carbide Whiskers on the Initiation and Propagation of Pits on Silicon Carbide/Aluminum Metal Matrix Composites, in: 10th Congress on Metallic Corrosion, Madras, India, 1987.

  20. P.P. Trzaskoma, E. McCafferty, C.R. Crane, Corrosion behaviour of SiC/Al metal matrix composites. J. Electrochem. Soc. 130, 1804–1809 (1983)

    Article  Google Scholar 

  21. P.P. Trzaskoma, Localized corrosion of metal matrix composites, in: Environmental Effects in Advanced Materials, ed. by H.J. Russell, E.R. Richard (The Minerals, Metals & Materials Society, Warrendale, PA, 1981), p. 249.

  22. M.A. Streicher, Pitting corrosion of 18Cr-8Ni stainless steel. J. Electrochem. Soc. 103(7), 375–390 (1956)

    Article  Google Scholar 

  23. B.E. Wilde, J.S. Armijo, Influence of sulfur on the corrosion resistance of austenitic stainless steel. Corrosion 23(7), 208–214 (1967)

    Article  Google Scholar 

  24. Z. Szklarska-smialowska, Pitting corrosion of aluminum. Corros. Sci. 41, 1743–1767 (1991)

    Article  Google Scholar 

  25. J.R. Galvele, S.M. Demicheli, Mechanism of intergranular corrosion of Al-Cu alloys. Corros. Sci. 10(11), 795–807 (1970)

    Article  Google Scholar 

  26. I.L. Muller, J.R. Galvele, Pitting potential of high purity binary aluminum alloys—I. Al.Cu alloys. Pitting and intergranular corrosion. Corros. Sci. 17, 179–189 (1977)

    Article  Google Scholar 

  27. B. Mazurkiewicz, A. Piotrowski, The electrochemical behaviour of the Al2Cu intermetallic compound. Corros. Sci. 23, 697–707 (1983)

    Article  Google Scholar 

  28. Corrosion of Aluminum and Aluminum Alloys, http://www.totalmateria.com/Article14.htm. Accessed: 11 Feb 2016

  29. H. Ezuber, A. El-houd, F. El-shawesh, A study on the corrosion behavior of aluminum alloys in seawater. Mater. Design 29(4), 801–805 (2008)

    Article  Google Scholar 

  30. E. Deltombe, M. Pourbaix, The electrochemical behavior of aluminum—potential pH diagram of the system AI-H2O at 25°C. Corrosion 14(11), 16–20 (1958)

    Article  Google Scholar 

  31. B. Zaid, D. Saidi, A. Benzaid, S. Hadji, Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy. Corros. Sci. 50, 1841–1847 (2008)

    Article  Google Scholar 

  32. H.M. Zakaria, Microstructural and corrosion behavior of Al/SiC metal matrix composites. Ain Shams Eng. J. 5(3), 831–838 (2014)

    Article  Google Scholar 

  33. F. Gnecco, A.M. Beccaria, Corrosion behaviour of Al–Si/SiC composite in sea water. Br. Corros. J. 34(1), 57–62 (1999)

    Article  Google Scholar 

  34. A. Pardo, M.C. Merino, S. Merino, M.D. López, F.M. Viejo, Carboneras. Influence of SiCp content and matrix composition on corrosion resistance in cast aluminum matrix composites in salt fog. Corros. Eng. Sci. Technol. 39(1), 82–88 (2004)

    Article  Google Scholar 

  35. B.J. Shamsul, B.Y. Zamri, R.A. Khairel, Comparative study of corrosion behavior of AA2014/15 Vol% Al2O3p and AA2009/20 Vol% SiCw. Portug. Electrochim. Acta. 26(3), 291–301 (2008)

    Google Scholar 

  36. P.M. Natishana, W.E. O’Grady, Chloride ion interactions with oxide-covered aluminum leading to pitting corrosion: a review. J. Electrochem. Soc. 161(9), C421–C432 (2014)

    Article  Google Scholar 

  37. P. Schmuki, From Bacon to barriers: a review on the passivity of metals and alloys. J. Solid State Electrochem. 6(3), 145–164 (2002)

    Article  Google Scholar 

  38. G.S. Frankel, N. Sridhar, Review: understanding localized corrosion. Mater. Today 11(10), 38–44 (2008)

    Article  Google Scholar 

  39. I. Bennour, V. Maurice, P. Marcus, X-ray photoelectron spectroscopy study of the interaction of ultra-thin alumina films on NiAl alloys with NaCl solutions. Surf. Interface Anal. 42(6-7), 581–587 (2010)

    Article  Google Scholar 

  40. P. Marcus, V. Maurice, H.H. Strehblow, Localized corrosion (pitting): a model of passivity breakdownincluding the role of the oxide layer nanostructure. Corros. Sci. 50, 2698–2704 (2008)

    Article  Google Scholar 

  41. C.Y. Chao, L.F. Lin, D.D. MacDonald, A point defect model for anodic passive films I. Film growth kinetics. J. Electrochem. Soc. 128, 1187–1194 (1981)

    Article  Google Scholar 

  42. L.F. Lin, C.F. Chao, D.D. MacDonald, A point defect model for anodic passive films II. Chemical breakdown and pit initiation. J. Electrochem. Soc. 128, 1194–1198 (1981)

    Article  Google Scholar 

  43. M. Urquidi, D.D. MacDonald, Solute vacancy interaction model and the effect of minor alloying elements on the initiation of pitting corrosion. J. Electrochem. Soc. 132, 555–558 (1985)

    Article  Google Scholar 

  44. N.L. Sukiman, X. Zhou, N. Birbilis, A.E. Hughes, J.M.C. Mol, S.J. Garcia, X. Zhou, G.E. Thompson, Durability and corrosion of aluminum and its alloys: overview, property space, techniques and developments, in: Aluminum Alloys—New Trends in Fabrication and Applications ed. by Z. Ahmad (InTech, Rijeka, 2012).

  45. S.M. Hirth, G.J. Marshall, S.A. Court, D.J. Lloyd, Effects of Si on the aging behaviour and formability of aluminum alloys based on AA6016. Mater. Sci. Eng. A. 319–321, 452–456 (2001)

    Article  Google Scholar 

  46. M. Usta, M.M.E. Glicksman, R.N. Wright, The effect of heat treatment on Mg2Si coarsening in aluminum 6105 alloy. Met. Mater. Trans. A. 35A(2), 435–438 (2004)

    Article  Google Scholar 

  47. O. Stelling, A. Irretier, O. Kessler, P. Krug, B. Commandeur, New light-weight aluminum alloys with high Mg2Si-content by spray forming. Mater. Sci. Forum. 519–521, 1245–1250 (2006)

    Article  Google Scholar 

  48. F. Eckermann, F.T. Suter, P.J. Uggowitzer, A. Afseth, P. Schmutza, The influence of MgSi particle reactivity and dissolution processes on corrosion in Al–Mg–Si alloys. Electrochim. Acta. 54(2), 844–855 (2008)

    Article  Google Scholar 

  49. F.I. Zeng, Z.I. Wei, J.F. Li, C.X. Li, X. Tan, Z. Zhang, Z.Q. Zheng, Corrosion mechanism associated with Mg2Si and Si particles in Al–Mg–Si alloys. Trans. Nonferrous Met. Soc. China. 21(12), 2559–2567 (2011)

    Article  Google Scholar 

  50. V. Guillaumin, G. Mankowski, Localized corrosion of 2024 T351 aluminum alloy in chloride media. Corros. Sci. 41(3), 421–438 (1998)

    Article  Google Scholar 

  51. M.H. Larsen, J.C. Walmsley, O. Lunder, R.H. Mathiesen, K. Nisancioglu, Intergranular corrosion of copper-containing AA6xxx AlMgSi aluminum alloys. J. Electrochem. Soc. 155(11), C550–C556 (2008)

    Article  Google Scholar 

  52. I.L. Muller, J.R. Galvele, Pitting potential of high purity binary aluminum alloys—II. AlMg and AlZn alloys. Corros. Sci. 17(12), 995–1007 (1977)

    Article  Google Scholar 

  53. B. Mazurkiewicz, A. Piotrowski, The electrochemical behaviour of the Al2Cu intermetallic compound. Corros. Sci. 23(7), 697–707 (1983)

    Article  Google Scholar 

  54. J.R. Scully, T.O. Knight, R.G. Buchheit, D.E. Peebles, Electrochemical characteristics of the Al2Cu, Al3Ta and Al3Zr intermetallic phases and their relevancy to the localized corrosion of Al alloys. Corros. Sci. 35(1–4), 185–195 (1993)

    Article  Google Scholar 

  55. R.G. Buchheit, Electrochemistry of θ(Al2Cu), S(Al2CuMg) and T1(Al2Cu–Li) and localized corrosion and environment assisted cracking in high strength Al alloys. Mater. Sci. Forum. 331(II), (2000).

  56. N. Birbilis, M.K. Cavanaugh, R.G. Buchheit, Electrochemical behavior and localized corrosion associated with Al7Cu2Fe particles in aluminum alloy 7075-T651. Corros. Sci. 48(12), 4202–4215 (2006)

    Article  Google Scholar 

  57. E. Andres, O. Juan, R. Edmundo, H. Francisco, A. Daniela, G. Juanluis, Oxygen reduction on Cu1, Mn16O4 spinel particles composite electrodes effect of particles size. J. Chilean Chem. Soc. (2014). doi:10.4067/S0717-97072014000200023

    Google Scholar 

  58. R. Gundersen, K. Nisancioglu, Cathodic protection of aluminum in seawater. Corrosion 46(4), 279–285 (1990)

    Article  Google Scholar 

  59. S.Y. Luo, Y.C. Zheng, M.C. Li, Effect of Cavitation on corrosion behavior of 20SiMn low-alloy steel in 3% sodium chloride solution. Corrosion. 59(7), 597–605 (2003)

    Article  Google Scholar 

  60. R.T. Loto, Pitting corrosion evaluation of austenitic stainless steel type 304 in acid chloride media. J. Mater. Environ. Sci. 4(4), 448–459 (2013)

    Google Scholar 

  61. L.F. Mondolfo, Aluminum Alloys: Structure and Properties (Butterwort, London, 1976), pp. 534–774

    Book  Google Scholar 

  62. P.P. Trzaskoma, Pit morphology of aluminum alloy and silicon carbide/aluminum alloy metal matrix composites. Corrosion 46(5), 402–409 (1990)

    Article  Google Scholar 

Download references

Acknowledgment

The authors express their sincere appreciation to Mechanical Engineering Department, College of Engineering Sciences and Applied Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, KSA for the availability of equipment and services for the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Tolulope Loto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loto, R.T., Adeleke, A. Corrosion of Aluminum Alloy Metal Matrix Composites in Neutral Chloride Solutions. J Fail. Anal. and Preven. 16, 874–885 (2016). https://doi.org/10.1007/s11668-016-0157-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-016-0157-3

Keywords

Navigation