Journal of Failure Analysis and Prevention

, Volume 16, Issue 4, pp 667–677 | Cite as

Optimizing Concentration of Drag Reducing Polymer in Case of One- and Two-Phase Flow in 90° Copper Elbow

  • Mohamed Ahmed Fouad Mohamed Gaber
  • Tagreed Mohamed Zewail
  • Nieven Kamal Amine
  • Yehia Ahmed El-tawail
Technical Article---Peer-Reviewed
  • 50 Downloads

Abstract

The rate of diffusion-controlled corrosion of 90° Copper Elbow by acidified dichromate has been investigated in relation to the following parameters: effect of solution velocity in the absence and presence of drag reducing polymer in case of liquid, gas, and solid flows on the rate of diffusion-controlled corrosion. The result has been obtained according to those equations: k α v 0.44 in the absence of drag reducing polymer, k α v 0.33 in case of liquid–solid and the presence of drag reducing polymer, k α v 0.36 in case of liquid–gas and the presence of drag reducing polymer

Keywords

Copper elbow Drag reducing polymer Liquid solid system Liquid gas system Rate of diffusion-controlled corrosion Two-phase flow 

List of Symbols

A

Active area (cm2)

d

Tube diameter (cm)

k

Mass transfer coefficient inside elbow (cm/s)

kd

Mass transfer coefficient in the presence of drag reducing polymer (cm/s)

ks

Mass transfer coefficient in the presence of suspended solid (cm/s)

v

Solution velocity (cm/s)

T

Temperature of reaction (K)

t

Time (s)

μ

Viscosity (g/cm s)

ρ

Density (g/cm3)

α

% of enhancement

Υ

Inhibition efficiency

References

  1. 1.
    M.G. Fontana, Corrosion engineering, 2nd edn. (McGraw Hill, New York, 1998)Google Scholar
  2. 2.
    M. El-Gammal, H. Mazhar, J.S. Cotton, C. Shefski, J. Pietralik, C.Y. Ching, The hydrodynamic effects of single-phase flow on flow accelerated corrosion in a 90-degree elbow. Int. J. Nucl. Eng. Des. 240, 1589–1598 (2010)CrossRefGoogle Scholar
  3. 3.
    B. Poulson, Complexities in predicting erosion corrosion. Int. J. Wear 200, 479–504 (1999)Google Scholar
  4. 4.
    L.I. Xiao, L.U. Tao, Analysis of corrosion failure of petrochemical pipe elbow. Int. J. Nucl. Mater. 12, 119–123 (2005)Google Scholar
  5. 5.
    W.H. Ahmed, Evaluation of the proximity effect on flow accelerated corrosion. Int. J. Ann. Nucl. Energy 37, 598–605 (2010)CrossRefGoogle Scholar
  6. 6.
    A. Whitea, Flow characteristics of complex soap systems. J. Non Newton. Fluid Mech. Nature 214, 585–586 (1967)Google Scholar
  7. 7.
    J.G. Savins, A stress-controlled drag-reduction phenomenon. J. Non Newton. Fluid Mech. Acta 6, 323–367 (1967)Google Scholar
  8. 8.
    B. Lu, X. Li, J.L. Zakin, Y. Talmon, A non-viscoelastic drag reducing cationic surfactant system. J. Non Newton. Fluid Mech. 71, 59–72 (1997)CrossRefGoogle Scholar
  9. 9.
    G.H. Jeffery, J. Bassett, R.C. Denney, Vogles, 5th edn. (Longman, New York, 1989)Google Scholar
  10. 10.
    M.H. Abdel-Aziz, I.A.S. Mansour, G.H. Sedahmed, Study of the rate of liquid–solid mass transfer controlled processes in helical tubes under turbulent flow conditions. Int. J. Chem. Eng. Process. 49, 643–648 (2010)CrossRefGoogle Scholar
  11. 11.
    G.H. Sedahmed, M.S.E. Abdo, M. Amer, G. Abdelatif, Mass transfer at a pipe inlet zone in relation to impingement corrosion. Int. J. Heat Mass Transf. 25, 443–451 (1998)CrossRefGoogle Scholar
  12. 12.
    C. Deslouis, I. Epelboin, B. Tnbollet, L. Viet, Flow of complex fluids past confined cylinders from macro to micro scale. Europhys. J. Non Newton. Fluid Mech. 52, 100–106 (1980)Google Scholar
  13. 13.
    N.I. Pecherkin, VYu. Chekhovich, Mass transfer in a two phase flow in curvilinear channel. J. Eng. Thermo-phys. 17, 113–119 (2008)CrossRefGoogle Scholar
  14. 14.
    B. Poulson, R. Robinson, The use of a corrosion process to obtain mass transfer data. Corros. Sci. 26, 265–280 (1986)CrossRefGoogle Scholar
  15. 15.
    S. Zhou, M.M. Stack, R.C. Newman, Characterization of synergistic effects between erosion and corrosion in an aqueous environment using electrochemical techniques. Corros. Sci. 52, 930–934 (1996)Google Scholar
  16. 16.
    K. Yuki, S. Hasegawa, T. Sato, H. Hashizume, K. Aizawa, H. Yamano, Matched refractive-index PIV visualization of complex flow structure in a three-dimensionally connected dual elbow. Nucl. Eng. Des. 241, 4544–4550 (2011)CrossRefGoogle Scholar

Copyright information

© ASM International 2016

Authors and Affiliations

  • Mohamed Ahmed Fouad Mohamed Gaber
    • 1
  • Tagreed Mohamed Zewail
    • 1
  • Nieven Kamal Amine
    • 1
  • Yehia Ahmed El-tawail
    • 1
  1. 1.Chemical Engineering Department, Faculty of EngineeringAlexandria UniversityAlexandriaEgypt

Personalised recommendations