Journal of Failure Analysis and Prevention

, Volume 16, Issue 4, pp 601–611 | Cite as

Extended Isogeometric Analysis (XIGA) of Fatigue Life in Attachment Lug

Technical Article---Peer-Reviewed
  • 156 Downloads

Abstract

In the present paper, extended isogeometric analysis (XIGA) is used to compute the stress intensity factor (SIF) in straight lugs of Aluminum 7075-T6. XIGA uses the non-uniform rational B-spline (NURBS) functions and enrichment functions through the partition of unity. The Heaviside function is enriched to capture jump at the crack faces, while the analytical asymptotic solutions are incorporate with NURBS to perform the crack tip singularity. The XIGA-based SIF of edge-cracked plate and straight attachment lug are compared with analytical solution and extended finite element method capability available in ABAQUS. Also, crack growth and fatigue life of single crack in attachment lug are estimated and then compared with the available experimental data for two different load ratios equal to 0.1 and 0.5. The SIF calculated from XIGA are in reasonable agreement with the available data.

Keywords

Attachment lugs Stress intensity factor Extended isogeometric analysis Fatigue life 

References

  1. 1.
    C. Chang, M.E. Mear, A boundary element method for two dimensional linear elastic fracture analysis. Int. J. Fract. 74, 219–251 (1985)CrossRefGoogle Scholar
  2. 2.
    T. Belytschko, Y. Lu, L. Gu, Crack propagation by element-free Galerkin methods. Eng. Fract. Mech. 51, 295–315 (1995)CrossRefGoogle Scholar
  3. 3.
    J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46, 131–150 (1999)CrossRefGoogle Scholar
  4. 4.
    T. Belytschko, T. Black, Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45, 601–620 (1999)CrossRefGoogle Scholar
  5. 5.
    N. Moës, T. Belytschko, Extended finite element method for cohesive crack growth. Eng. Fract. Mech. 69, 813–833 (1999)CrossRefGoogle Scholar
  6. 6.
    N. Moës, J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46, 132–150 (1999)CrossRefGoogle Scholar
  7. 7.
    N. Sukumar, N. Moës, B. Moran, T. Belytschko, Extended finite element method for three-dimensional crack modelling. Int. J. Numer. Methods Eng. 48, 1549–1570 (2000)CrossRefGoogle Scholar
  8. 8.
    W. Liu, Q.D. Yang, S. Mohammadizadeh, X.Y. Su, An efficient augmented finite element method (A-FEM) for arbitrary cracking and crack interaction in solids. Int. J. Numer. Methods Eng. 99, 438–468 (2014)CrossRefGoogle Scholar
  9. 9.
    M. Naderi, J. Jung, Q.D. Yang, A three dimensional augmented finite element for modeling arbitrary cracking in solids. Int. J. Fract. (2016). doi: 10.1007/s10704-016-0072-3 Google Scholar
  10. 10.
    J.H. Song, P.M.A. Areias, T. Belytschko, A method for dynamic crack and shear band propagation with phantom nodes. Inter. J. Numer. Methods Eng. 67, 868–893 (2006)CrossRefGoogle Scholar
  11. 11.
    F.P. Van de Meer, L.J. Sluys, A phantom node formulation with mixed mode cohesive law for splitting in laminates. Int. J. Fract. 158, 107–124 (2009)CrossRefGoogle Scholar
  12. 12.
    K. Kathiresan, T.M. Hsu, Advanced Life Analysis Methods-Crack Growth, Analysis Methods for Attachment Lugs. Technical Report AFWAL-TR-84-3080 Volume II (1984)Google Scholar
  13. 13.
    R. Rigby, M.H. Aliabadi, Study on expression of SIF for tapered lug subjected to oblique pin-load. Eng. Fail. Anal. 4, 133–146 (1997)CrossRefGoogle Scholar
  14. 14.
    T.H.H. Pian, J.W. Mar, O. Orringer, G. Stalk, Numerical Computation of Stress Intensity Factors for Aircraft Structural Details by Finite Element Methods. Technical Report AFFDL-TR-76-12 (1976)Google Scholar
  15. 15.
    J.A. Aberson, J.M. Anderson, Cracked Finite-Elements Proposed for NASTRAN. Third NASTRAN Users’ Colloquium, NASA TMX-2893 (1973), pp. 531–550Google Scholar
  16. 16.
    O. Gencoz, U.G. Goranson, R.R. Merrill, Application of finite element analysis techniques for predicting crack propagation in lugs. Int. J. Fatigue 2, 121–129 (1980)CrossRefGoogle Scholar
  17. 17.
    K.B. Narayana, T.S. Dayananda, B. Dattaguru, T.S. Ramamurthy, K. Vijayakumar, Cracks emanating from pin-loaded lugs. Eng. Fract. Mech. 47, 29–38 (1994)CrossRefGoogle Scholar
  18. 18.
    V.E. Saouma, I.J. Zatz, An automated finite element procedure for fatigue crack propagation analyses. Eng. Fract. Mech. 20, 321–333 (1984)CrossRefGoogle Scholar
  19. 19.
    C.S. Shin, Some aspects of corner fatigue crack growth from holes. Int. J. Fatigue 13, 233–240 (1991)CrossRefGoogle Scholar
  20. 20.
    S. Boljanovic, S. Maksimovic, Fatigue crack growth modeling of attachment lugs. Int. J. Fatigue 58, 66–74 (2014)CrossRefGoogle Scholar
  21. 21.
    D.P. Rooke, M.H. Aliabadi, The use of fundamental fields to obtain weight functions for mixed-mode cracks. Int. J. Eng. Sci. 32, 155–166 (1994)CrossRefGoogle Scholar
  22. 22.
    M. Naderi, N. Iyyer, Fatigue life prediction of cracked attachment lugs using XFEM. Int. J. Fatigue 77, 186–193 (2015)CrossRefGoogle Scholar
  23. 23.
    T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)CrossRefGoogle Scholar
  24. 24.
    J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, Isogeometric Analysis: Towards Integration of CAD and FEA (Wiley, Chichester, 2009)CrossRefGoogle Scholar
  25. 25.
    P. Phu Nguyen, P. Kerfriden, S.P.A. Bordas, Two and three dimensional isogeometric cohesive elements for composite delamination analysis. Composites B 60, 193–212 (2014)CrossRefGoogle Scholar
  26. 26.
    C.V. Verhoosel, M.A. Scott, R. de Borst, T.J.R. Hughes, An isogeometric approach to cohesive zone modeling. Int. J. Numer. Methods Eng. 87, 1–5 (2011)CrossRefGoogle Scholar
  27. 27.
    G. Haasemann, M. Kästner, S. Prüger, V. Ulbricht, Development of a quadratic finite element formulation based on the XFEM and NURBS. Int. J. Numer. Methods Eng. 86, 598–617 (2011)CrossRefGoogle Scholar
  28. 28.
    H. Nguyen-Xuan, L.V. Tran, C.H. Thai, C.V. Le, Plastic collapse analysis of cracked structures using extended isogeometric elements and second-order cone programming. Theor. Appl. Fract. Mech. 72, 13–27 (2014)CrossRefGoogle Scholar
  29. 29.
    L. Tran, P. Phung Van, P. Phu Nguyen, A. Abdel Wahab, H. Nguyen Xuan, Vibration analysis of cracked plate using higher-order shear deformation theory. Int. J. Fract. Fatigue Wear 2, 127–133 (2014)Google Scholar
  30. 30.
    N. Nguyen-Thanh, N. Valizadeh, M. Nguyen, H. Nguyen-Xuan, X. Zhuang, P. Areias, G. Zih, Y. Bazilevsg, L. De Lorenzisa, T. Rabczuk, An extended isogeometric thin shell analysis based on Kirchhoff-Love theory. Comput. Methods Appl. Mech. Eng. 284, 265–291 (2015)CrossRefGoogle Scholar
  31. 31.
    L. Tran, H. Nguyen-Xuan, M. Abdel Wahab, Extended isogeometric analysis in modeling cracked structures. Int. J Fract. Fatigue Wear 3, 57–64 (2015)Google Scholar
  32. 32.
    S.S. Ghorashi, N. Valizadeh, S. Mohammadi, Extended isogeometric analysis for simulation of stationary and propagating cracks. Int. J. Numer. Methods Eng. 89, 1069–1101 (2012)CrossRefGoogle Scholar
  33. 33.
    E. De Luycker, D. Benson, T. Belytschko, Y. Bazilevs, M. Hsu, X-FEM in isogeometric analysis for linear fracture mechanics. Int. J. Numer. Methods Eng. 87, 541–565 (2011)CrossRefGoogle Scholar
  34. 34.
    M. Cuomo, L. Contrafatto, L. Greco, A variational model based on isogeometric interpolation for the analysis of cracked bodies. Int. J. Eng. Sci. 80, 173–188 (2014)CrossRefGoogle Scholar
  35. 35.
    Dassault Systèmes: Abaqus 6.13, Online documentation (Dassault Systèmes, Providence, 2013)Google Scholar
  36. 36.
    J.R.J.C. Newman, Fracture analysis of surface- and through-cracked sheets and plates. Eng. Fract. Mech. 5, 667–689 (1973)CrossRefGoogle Scholar
  37. 37.
    I.S. Raju, J.C. Newman Jr., Stress intensity factor for two symmetric corner cracks. ASTM STP 677, 411–430 (1976)Google Scholar
  38. 38.
    J.C. Newman Jr., Predicting failure of specimens with either Surface cracks or corner at holes. NASA TN D-8244 (1976)Google Scholar
  39. 39.
    E.K. Walker, The Effect of Stress Ratio During Crack Propagation and Fatigue for 2024-T3 and 7076-T6 Aluminum. Effect of Environment and Complex Load History on Fatigue Life. ASTM STR 462 (American Society for Testing and Materials, Philadelphia, 1970), pp. 1–4Google Scholar
  40. 40.
    N.E. Dowling, Mechanical behavior of materials (Pearson Education Inc, Upper Saddle River, 2007)Google Scholar
  41. 41.
    H.P. Tada, P.C. Paris, G.R. Irvine, The stress analysis of cracks handbook (Del Research Corporation, St. Louis, 1985)Google Scholar
  42. 42.
    T. Elguedj, A. Duval, F. Maurin, H. Al Akhras. Abaqus User Element implementation of NURBS based Isogeometric Analysis. In: 6th European Congress on Computational Methods in Applied Science and Engineering, Vienna, Austria, Sep. 10th–Sep. 14th (2012)Google Scholar
  43. 43.
    C.F. Shih, R.J. Asaro, Elastic-plastic analysis of cracks on bimaterial interfaces: Part I—Small scale yielding. J. Appl. Mech. 55, 299–316 (1988)CrossRefGoogle Scholar
  44. 44.
    V.P. Nguyen, S.P.A. Bordas, T. Rabczuk, Isogeometric analysis: an overview and computer implementation aspects. http://arxiv.org/abs/1205.2129 (2012)

Copyright information

© ASM International 2016

Authors and Affiliations

  1. 1.Technical Data Analysis, Inc. (TDA)Falls ChurchUSA

Personalised recommendations