Journal of Failure Analysis and Prevention

, Volume 16, Issue 3, pp 410–416 | Cite as

Evaluation of Erosion Corrosion in Liquid–Solid and Liquid–Gas via Experimental Analysis Inside 90° Copper Elbow

  • Mohamed Ahmed Fouad Mohamed Gaber
  • Taghreed Mohamed Zewail
  • Nieven Kamal Amine
Technical Article---Peer-Reviewed
  • 110 Downloads

Abstract

Erosion–corrosion experiments of copper elbow were performed by acidified dichromate. Mass transfer coefficient inside 90° copper elbow has been investigated. The results showed that the mass transfer coefficient increases as solution velocity increases in both cases of one- and two-phase flow. The mass transfer coefficient can be related to the solution velocity in case one-phase flow by the following equations:
$$k \, \alpha \, v^{ 0. 4 4}\quad{\text{for\,Sc\,from\,678 to 845}}$$
$$k \, \alpha \, v^{ 0. 3}\quad{\text{for\,Sc\,from\,1040\,to\,1445}}$$
In case of liquid–solid flow
$$k \, \alpha \, v^{ 0. 3 3}$$
In case of liquid–gas flow
$$k \, \alpha \, vg^{ 0. 2 4}$$
The importance of these equations is to understand and predict erosion corrosion inside 90o copper elbow.

Keywords

One-phase flow Two-phase flow Mass transfer coefficient Copper elbow Solution velocity 

List of Symbols

A

Active area of copper elbow (cm2)

Q

Solution volume (cm3)

C0

Initial dichromate ions concentration (mol/cm3)

C

Dichromate ions concentration in the system at time t (mol/cm3)

k

Mass transfer coefficient inside elbow (cm/s)

v

Solution velocity (cm/s)

vg

Gas velocity (cm/s)

Dimensionless Group

Sc

Schmidt number \(\left( {\frac{\mu }{{\rho {\text{D}}}}} \right)\)

References

  1. 1.
    R.E. Treybal, Mass Transfer Operation, 3rd edn. (McGraw Hill, Hoboken, 1980)Google Scholar
  2. 2.
    P.R. Roberge, Hand Book of Corrosion Engineering (McGraw Hill, Roberge, 2000)Google Scholar
  3. 3.
    B. Poulson, Complexities in predicting erosion corrosion. Int. J. Wear 200, 479–504 (1999)Google Scholar
  4. 4.
    M.G. Fontana, Corrosion Engineering, 2nd edn. (McGraw Hill, New York, 1988)Google Scholar
  5. 5.
    A.I. Vogel, Text Book of Quantitative Analysis (Longman, London, 1961), pp. 200–315Google Scholar
  6. 6.
    B. Poulson, Electrochemical measurements in flowing solutions. Corr. Sci. 23, 391–430 (1983)CrossRefGoogle Scholar
  7. 7.
    L.I. Xiao, L.U. Tao, Analysis of corrosion failure of petrochemical pipe elbow. Int. J. Nucl. Mater. 12, 119–123 (2005)Google Scholar
  8. 8.
    G.H. Jeffery, J. Bassett, R.C. Denney, Vogles, 5th edn. (Longman, New York, 1989)Google Scholar
  9. 9.
    B. Poulson, R. Robinson, The use of a corrosion process to obtain mass transfer data. Corros. Sci. 26, 265–280 (1986)CrossRefGoogle Scholar
  10. 10.
    C. Shefski, C.Y. Ching, H. Mazhar, J. Pietralik, J.S. Cotton, M. El-Gammal, The hydrodynamic effects of single-phase flow on flow accelerated corrosion in a 90-degree elbow. Int. J. Nucl. Eng. Des. 240, 1589–1598 (2010)CrossRefGoogle Scholar
  11. 11.
    D.M. Anliker, P.F. Ellis II, Geothermal Power Plant Corrosion Experience—A Geothermal Survey, Corrosion/81, Toronto, 1981, paper 235Google Scholar
  12. 12.
    E.L. Cussler, Diffusion Mass Transfer in Fluid Systems, 2nd edn. (Cambridge university press, New York, 1997)Google Scholar
  13. 13.
    G. Abdelatif, G.H. Sedahmed, M.S.E. Abdo, Mass transfer at a pipe inlet zone in relation to impingement corrosion. Int. J. Heat Mass Transf. 25, 443–451 (1998)CrossRefGoogle Scholar
  14. 14.
    H. Nanjo, I.Y. Kurata, J. Ikeuchi, and N. Sanada, Material damages in geothermal power plants, in Proceedings of 14th New Zealand Georhermal Workshop 1992, Auckland, 1992, p, 159Google Scholar
  15. 15.
    S. Zhou, M.M. Stack, R.C. Newman, Characterization of synergistic effects between erosion and corrosion in an aqueous environment using electrochemical techniques. Corros. Sci. 52, 926–934 (1996)Google Scholar

Copyright information

© ASM International 2016

Authors and Affiliations

  • Mohamed Ahmed Fouad Mohamed Gaber
    • 1
  • Taghreed Mohamed Zewail
    • 1
  • Nieven Kamal Amine
    • 1
  1. 1.Chemical Engineering Department, Faculty of EngineeringAlexandria UniversityAlexandriaEgypt

Personalised recommendations