Journal of Failure Analysis and Prevention

, Volume 16, Issue 3, pp 369–375 | Cite as

An X-ray Diffraction Method to Improve Fatigue Fracture Surface Analysis

  • A. Ratier
  • P. Feraud
  • F. Chalon
  • P. Lallet
  • N. Ranganathan
Technical Article---Peer-Reviewed


When in-service failure occurs, it is important to determine the causes of failure. To get a good knowledge of in-service loading, the Authors decided to study fatigue fracture surfaces to obtain this information. The ideal method is the one that permits the determination of maximum stress intensity factor and the load ratio from a fracture analysis. In a previous study, authors have applied a method based on the determination of the areal coverage of significant fractographic features on the fracture surface. Due to limits of this method, authors decided to add another technique based on X-ray diffraction measurements.


Railway axle Fatigue failure Quantitative fractography X-ray diffraction FWHM Variable amplitude loading 

List of Symbols


Loading ratio


Maximum stress intensity factor


Stress intensity factor range


Full width at half maximum of the diffraction peak


Scanning electron microscope


X-ray diffraction


Crack propagation rate


Monotonic yield stress


Cyclic yield stress


Monotonic plastic zone size


Cyclic plastic zone size


Coefficient of relationship between the plastic zone size and the stress intensity factor


  1. 1.
    Y. Murakami, K. Furukawa, Int. J. Fatigue 20(7), 509–516 (1998)CrossRefGoogle Scholar
  2. 2.
    J. Carrera et al., Comput. Mater. Sci. 3, 1–8 (1994)CrossRefGoogle Scholar
  3. 3.
    A.M. Gokhale, J.R. Patel, Mater. Charact. 54, 13–20 (2005)CrossRefGoogle Scholar
  4. 4.
    N. Ranganathan et al., Fractography of Modern Engineering Materials, Composites and Metals, vol. 2, ASTM STP 1203 (ASTM, Philadelphia, 1987), pp. 71–94Google Scholar
  5. 5.
    N. Ranganathan et al, A method for quantitative fatigue fracture surface analysis, in Proceeding of the 4th International Conference on Crack Paths, Gaeta, Italy (2012)Google Scholar
  6. 6.
    S.Q. Li et al., Mater. Sci. Eng. A 119, 59–72 (1989)CrossRefGoogle Scholar
  7. 7.
    S.P. Lynch, Mater. Sci. Eng. A 468–470, 74–80 (2007)CrossRefGoogle Scholar
  8. 8.
    C. Laird, The Influence of Metallurgical Structure on the Mechanisms of Fatigue Crack Propagation, ASTM STP 415 (ASTM, Philadelphia, 1967), pp. 131–168Google Scholar
  9. 9.
    F. Pariente, M. Guagliano, Fatigue Fract. Eng. Mater. Struct. 31, 111–124 (2007)CrossRefGoogle Scholar
  10. 10.
    E.E. Underwood and E.A. Starke, Jr, ASTM STP 675, American Society for Testing and Materials, pp 309–321 (1988)Google Scholar
  11. 11.
    N. Ranganathan, J.R. Desforges, Fatigue Fract. Engng. Mater. Struct. 19(8), 997–1008 (1996)CrossRefGoogle Scholar
  12. 12.
    N. Ranganathan et al., Determination of Fracture Mechanics Parameters by Quantitative Fractography, in Non Traditional Methods of Sensing Stress, Strain and Damage in Materials and Structures, vol. 1323, ed. by G.F. Lucas, P. Mckeighan, J.S. Ransom (ASTM Special Technical Publication, Philadelphia, 2001), pp. 52–84CrossRefGoogle Scholar

Copyright information

© ASM International 2016

Authors and Affiliations

  • A. Ratier
    • 1
    • 2
  • P. Feraud
    • 1
  • F. Chalon
    • 2
  • P. Lallet
    • 1
  • N. Ranganathan
    • 2
  1. 1.SNCF Agence d’essais FerroviairesVitry-sur-SeineFrance
  2. 2.Laboratoire de Mécanique et rhéologieUniversité François Rabelais de ToursToursFrance

Personalised recommendations