Journal of Failure Analysis and Prevention

, Volume 15, Issue 3, pp 436–440 | Cite as

Stereoscopic Analysis of the Stretch Zone of a Steel Specimen Cut Out of a Railway Axle and Tested for Static Fracture Toughness

  • P. O. Maruschak
  • A. P. Sorochak
  • I. V. Konovalenko
Technical Article---Peer-Reviewed


The method for determining the height of the surface microirregularities by means of a pseudostereopair, which can be used to determine the geometry of the start zone of the brittle separation crack, is completed and automated. The possibility of using the proposed method for investigating the stretch zone of compact specimens of the OSL steel is considered. The stretch zone of the railway axis steel is investigated using the proposed technique.


Stretch zone Scanning electron microscope Failure mechanism 


  1. 1.
    U. Zerbst, K. Madler, H. Hintze, Fracture mechanics in railway applications—an overview. Eng. Fract. Mech. 72, 163–194 (2005)CrossRefGoogle Scholar
  2. 2.
    S.J. Kwon, D.H. Lee, J.W. Seo, S.T. Kwon, Safety margin evaluation of railway wheel based on fracture scenarios. Int. J Railway 544, 280–285 (2012)Google Scholar
  3. 3.
    M.R. Zhang, H.C. Gu, Microstructure and mechanical properties of railway wheels manufactured with low-medium carbon Si-Mn-Mo-V steel. J. Univ. Sci. Technol. Beijing 15, 125–131 (2008)CrossRefGoogle Scholar
  4. 4.
    C. Klinger, D. Bettge, Axle fracture of an ICE3 high speed train. Eng. Fail. Anal. 35, 66–81 (2013)CrossRefGoogle Scholar
  5. 5.
    Y.X. Zhao, Fatigue crack growth law covering threshold and fracture toughness for railway LZ50 axle steel. Adv. Mat. Res. 544, 280–285 (2012)CrossRefGoogle Scholar
  6. 6.
    P.O. Maruschak, A.P. Sorochak, A. Menou, O.V. Maruschak, Regularities in macro- and micromechanisms of fatigue crack growth in a bimetal of continuous caster rolls. Case Stud. Eng. Fail. Anal. 1, 165–170 (2013)CrossRefGoogle Scholar
  7. 7.
    M. Khokhlov, A. Fischer, D. Rittel, Multi-scale stereo-photogrammetry system for fractographic analysis using scanning electron microscopy. Exp. Mech. 52, 975–991 (2012)CrossRefGoogle Scholar
  8. 8.
    A. Ya, Krasovskii stereoscopic measurements of the stretched zone as an independent method for metal fracture toughness control. Strength Mater. 32, 476–479 (2000)CrossRefGoogle Scholar
  9. 9.
    P.V. Yasniy, I.B. Okipnyi, P.O. Maruschak, S.V. Panin, I.V. Konovalenko, Crack tip strain localisation on mechanics of fracture of heat resistant steel after hydrogenation. Theor. Appl. Fract. Mech. 63–64, 63–68 (2013)CrossRefGoogle Scholar
  10. 10.
    D.A. Sakseev, E.M. Ershenko, S.V. Baryshev, A.V. Bobyl’, D.V. Agafonov, Deep microrelief measurement and stereo photography in scanning electron microscopy. Tech. Phys. 56, 127–131 (2011)CrossRefGoogle Scholar
  11. 11.
    A.J. Krasowsky, V.A. Vainshtok, On a relationship between stretched zone parameters and fracture toughness of ductile structural steels. Int. J. Fract. 17, 579–592 (1981)CrossRefGoogle Scholar
  12. 12.
    P.O. Maruschak, I.V. Konovalenko, E.V. Maruschak, A.P. Sorochak, Automated method for stereometric study of fatigue failure mechanisms. Metallurgist 58, 43–47 (2014)CrossRefGoogle Scholar
  13. 13.
    V.A. Stepanenko, A.S. Shtukaturova, P.V. Yasnyi, Stereofractographic investigation of the zone of static advance and the dynamic jump of a fatigue crack in casing steel. Soviet Mater. Sci. 19, 550–556 (1983)CrossRefGoogle Scholar
  14. 14.
    H. Alihosseini, K. Dehghani, Modeling and failure analysis of a broken railway axle: effects of surface defects and inclusions. J. Fail. Anal. Prev. 10, 233–239 (2010)CrossRefGoogle Scholar

Copyright information

© ASM International 2015

Authors and Affiliations

  • P. O. Maruschak
    • 1
  • A. P. Sorochak
    • 1
  • I. V. Konovalenko
    • 1
  1. 1.Ternopil Ivan Pul’uj National Technical UniversityTernopilUkraine

Personalised recommendations