Advertisement

Journal of Failure Analysis and Prevention

, Volume 16, Issue 1, pp 135–141 | Cite as

Performance Evaluation and Multidoped Composite Conditioned of A5-type/10%Ti-Sn Alloy: Processing and Properties

  • O. S. I. Fayomi
  • A. P. I. Popoola
  • F. Oyawale
  • O. O. Ajayi
Technical Article---Peer-Reviewed

Abstract

The need to improve the mechanical and electrochemical performance of aluminum alloy for extended application is the motivation behind this present work which is the inoculation of TiO2/SnO2 composite particulates on A500 by stir casting route. The effect of Ti/Sn on A500 aluminum series on the properties and microstructure of the produced alloy were investigated. The TiO2/SnO2 was varied from 5 to 10 wt.%. The microstructural properties of these sequence alloys were investigated using scanning electron microscopy coupled with energy dispersive spectroscopy, and X-ray diffraction. The corrosion degradation properties in 3.65% NaCl solution were studied using linear potentiodynamic polarization technique. The wear and hardness of the composite-induced aluminum alloy were measured with dry abrasive MTR-300 testers and high diamond microhardness tester, respectively. The results showed that the average hardness value of 42.56 and 65.5 HV and wear loss of 1.5 and 0.5 g were obtained for the 0% and 10 wt.% TiO2/SnO2 in A500 series. Hence, the addition of TiO2·SnO2 led to the precipitation and modification of complex intermetallic particles like Al2SnTiO and AlSiSn which also indicate a fairly good interfacial interaction. This outcome has established that up to 10 wt.% particulate on A500 aluminum can be used in enhancing the tribology, microhardness, and corrosion mitigation of aluminum alloy.

Keywords

A5-type/Ti-Sn Stir casting Mechanical properties Microstructure 

Notes

Acknowledgments

This work is supported through by Mr. Adelaja E.O of Covenant University. The financially support by the National Research Foundation, Pretoria, South Africa were deeply appreciated.

References

  1. 1.
    Y. Chuang, S. Lee, H. Lin, Mater. Trans. 47, 106 (2006)CrossRefGoogle Scholar
  2. 2.
    M. Abdulwahab, A. MaduguI, S.A. Yaro, S.B. Hassan, A.P.I. Popoola, Mater. Des. 32, 1159 (2011)CrossRefGoogle Scholar
  3. 3.
    N. Li, X. Lu, C. Jian-Zhong, Trans. Nonferrous Met. Soc. China 18, 541 (2008)CrossRefGoogle Scholar
  4. 4.
    F. Bonollo, J. Urban, B. Bonatto, M. Botter, Metallurgiaitaliana 6, 23 (2005)Google Scholar
  5. 5.
    H.S. Ding, J. Gou, J and Jia. J Trans. Nonferrous Met. Soc. China 11, 540 (2001)Google Scholar
  6. 6.
    J. Deshpande, Research Programs. Department of Manufacturing Engineering, Worcester Polytechnic Institute (2006).Google Scholar
  7. 7.
    O.P. Gbenebor, S.O. Adeosun, O.S.I. Fayomi, O.O. Joseph, Int J. Sci. Eng. Res. 3, 2229–5518 (2012)Google Scholar
  8. 8.
    O.S.I. Fayomi, O.P. Gbenebor, M. Abdulwahab, C.A. Bolu, A.P.I. Popoola, J. New Mater. Electrochem. Syst. 16, 059 (2013)Google Scholar
  9. 9.
    Vander Boon D. Laboratory Module 3, Grand Valley State University, (2005) pp. 1–5Google Scholar
  10. 10.
    Y. Wang, H.-T. Li, Z. Fan, Trans. Indian Inst. Met. doi: 10.1007/s12666-012-0194-x
  11. 11.
    A. Rashid, The Treatment of Liquid Silicon–Aluminum Alloys. Department of MME, BUET Dhaka (2010) lectures 17, chap. 7, pp. 1–15Google Scholar
  12. 12.
    M. Abdulwahab, I.A. Madugu, F. Asuke, O.S.I. Fayomi, F.A. Ayeni, J. Mater. Environ. Sci. 4, 87 (2013)Google Scholar
  13. 13.
    L.A. Dobrzański, R. Maniara, J.H. Sokolowski, J. Achiev. Mater. Manuf. Eng. 17, 217 (2006)Google Scholar
  14. 14.
    Nguyen H, School of Engineering, Grand Valley State (2005) 1Google Scholar
  15. 15.
    F. Grosselle, G. Timelli, F. Bonollo, R. Molin, Metal Sci. Technol. 22, 2 (2009)Google Scholar
  16. 16.
    Sigworth C. K. American Foundry Society (2007) pp. 1–12Google Scholar
  17. 17.
    J. Szajnar, T. Wróbel, J Achiev. Mater. Manuf. Eng. 27, 95 (2008)Google Scholar
  18. 18.
    X. Bo, L. Yuandong, Y. Ma, H. Yuan, China Foundry 8, 211 (2011)Google Scholar
  19. 19.
    R.Y. Chen, D. Willis, J. Metall. Mater. Trans. 36, 117 (2005)CrossRefGoogle Scholar
  20. 20.
    G.L. Dong, L. Kyuhong, K. Sunghak, Surf. Coat. Technol. 201, 1296 (2006)CrossRefGoogle Scholar
  21. 21.
    S. Yanwei, L. Bangsheng, L. Aihui, G. Jingjie, F. Hengzhi, China Foundry 7, 43 (2010)Google Scholar
  22. 22.
    T. Ahmet, D. Mehmet, K. Sabri, J. Mater. Sci. 42, 8298 (2007)CrossRefGoogle Scholar
  23. 23.
    K. B. Rudman, Metal Casting Reference Book, Department of Materials Science and Engineering, Michigan Technical University, USA, (2005) p. 23Google Scholar
  24. 24.
    H. Ding, G. Zhou, D. Hui, (Proc. IMechE), Part J: Eng. Trib. 225, 43 (2011)Google Scholar
  25. 25.
    O.P. Gbenebor, M. Abdulwahab, O.S.I. Fayomi, A.P.I. Popoola, Chalcogenide Lett. 9, 201 (2012)Google Scholar

Copyright information

© ASM International 2016

Authors and Affiliations

  • O. S. I. Fayomi
    • 1
    • 2
  • A. P. I. Popoola
    • 2
  • F. Oyawale
    • 1
  • O. O. Ajayi
    • 1
  1. 1.Department of Mechanical EngineeringCovenant UniversityOtaNigeria
  2. 2.Department of Chemical, Metallurgical and Materials EngineeringTshwane University of TechnologyPretoriaSouth Africa

Personalised recommendations