Journal of Failure Analysis and Prevention

, Volume 14, Issue 2, pp 191–196 | Cite as

Assessment of Microbially Influenced Corrosion Risk in Slovak Pipeline Transmission Network

  • Jana Kaduková
  • Erika Škvareková
  • Vojtech Mikloš
  • Renáta Marcinčáková
Technical Article---Peer-Reviewed


Microbial activities are particularly serious in buried natural gas pipelines resulting in high corrosion costs. It is a mater of necessity to deal with this factor during the evaluation of corrosion risk. The objective of this investigation was to determine to what extent the main factors of environment are responsible for biocorrosion behavior in particular transmission pipeline sections running through Slovakia and subsequently evaluate the biocorrosion risk in the studied areas. According to the point method the probability and outcome value of three chosen factors, such as soil characteristics, water presence, and location were determined for each excavation. Two from the monitored excavations in the east of Slovakia and three situated in the south of Slovakia were found to be the most hazardous sites in terms of biocorrosion risk.


Corrosion Microbially influenced corrosion Gas transmission pipelines 



The research presented in this paper was supported by the Scientific Grant Agency (VEGA) of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences, Grant No. 1/0235/12, 1/11/1206/12 and Grant No. 1/0590/11. Authors thank Ms. Lucia Hruskova for her help with risk calculations.


  1. 1.
    A. Rajasekar, T. Ganesh Babu, S. Karutha Pandian, S. Maruthamuthu, N. Palaniswamy, A. Rajendran, Biodegradation and corrosion behavior of manganese oxidizer Bacillus cereus ACE4 in diesel transporting pipeline. Corros. Sci. 49(6), 2694–2710 (2007)CrossRefGoogle Scholar
  2. 2.
    J.A. Beavers, N.G. Thompson, External Corrosion of Oil and Natural Gas Pipelines, ASM Handbook, 13C, Corrosion Environments and Industries (ASM International, Materials Park, 2006)Google Scholar
  3. 3.
    I. Beech, J. Sunner, Biocorrosion: towards understanding interactions between biofilms and metals. Curr. Opin. Biotechnol. 15(3), 181–186 (2004)CrossRefGoogle Scholar
  4. 4.
    E. Miranda, M. Bethencourt, F.J. Botana, M.J. Cano, J.M. Sanchéz-Amaya, A. Corzo, J.G. de Lomas, M.L. Fardeau, B. Ollivier, Biocorrosion of carbon steel alloys by an hydrogenotrophic sulfate-reducing bacterium Desulfovibrio capillatus isolated from a Mexican oil field separator. Corros. Sci. 48, 2417–2431 (2006)CrossRefGoogle Scholar
  5. 5.
    V. Harbulakova, Biocorrosion of Concrete Sewer Pipes (Biokorózia betónových kanalizačných potrubí), Fyzikální a chemické vlastnosti stavebních hmot, Juniorstav, Brno, Czech Republic, 1–2 (2008)Google Scholar
  6. 6.
    A.H. Videla, Prevention and control of biocorrosion. Int. Biodeterior. Biodegradation 49, 259–270 (2002)CrossRefGoogle Scholar
  7. 7.
    A. Estokova, V. Ondrejka Harbulaková, A. Luptaková, M. Prascaková, N. Stevulova, Sulphur oxidizing bacteria as the causative factor of biocorrosion of concrete. Chem. Eng. Trans. 24, 1–6 (2011)Google Scholar
  8. 8.
    O. Clupek, H. Davidova, Corrosion Protection (Protikorózní ochrana) (GAS s.r.o, Praha, 1998)Google Scholar
  9. 9.
    D. Ifezue, V.C. Nettikaden, Managing sour service in oil export and onshore pipelines: a case study. J. Fail. Anal. Prev. 13, 264–273 (2013)CrossRefGoogle Scholar
  10. 10.
    J. Hodolic, G. Bajgo, I. Budak, A. Paulikova, Measurement and Control of Microbial Contamination of Cutting Fluids (STU, Bratislava, 2007), pp. 117–122Google Scholar
  11. 11.
    E. Horniakova, M. Bugel, T. Bakalar, Influence of Road Salts on the Processes in Activation Tanks of Wastewater Plants (Sledovanie vplyvu posypových solí na procesy v aktivačnej nádrži) (Chemické listy, Prag, 2010), pp. 257–260Google Scholar
  12. 12.
    A. Luptakova, M. Kusnierova, P. Fecko, Mineral biotechnology II. Sulfuretum in Nature and Industry (Minerálne biotechnológie II., Sulfuretum v prírode a v priemysle) (VŠB Technical University, Ostrava, 2002)Google Scholar
  13. 13.
    T. Liptakova, I. Sestina, Fundamentals of Corrosion and Metal Protection in Gas Industry (Základy korózie a ochrany kovov v plynárstve) (University of Zilina, Zilina, 1997)Google Scholar
  14. 14.
    M. Zelenakova, A. Jakubikova, Modelling of erosion and transport processes. Ecology 29, 87–98 (2010)Google Scholar
  15. 15.
    H. Pacaiova, J. Sinay, J. Glatz, Safety and Risks of Technical Systems (Bezpečnosť a riziká technických systémov) (TU, SjF, Kosice, 2009)Google Scholar
  16. 16.
    L. Hruskova, Master’s thesis—Biocorrosion (Diplomová práca, Biokorózia), TU, Kosice, 2011Google Scholar

Copyright information

© ASM International 2014

Authors and Affiliations

  • Jana Kaduková
    • 1
  • Erika Škvareková
    • 2
  • Vojtech Mikloš
    • 3
  • Renáta Marcinčáková
    • 1
  1. 1.Department of Materials Science, Faculty of MetallurgyTechnical University of KosiceKosiceSlovak Republic
  2. 2.Faculty of Mining, Ecology, Process Control and GeotechnologyTechnical University of KosiceKosiceSlovak Republic
  3. 3.Department of Integrated Management, Faculty of MetallurgyTechnical University of KosiceKosiceSlovak Republic

Personalised recommendations