Skip to main content
Log in

Cervical Stent Failure Analysis

  • Case History---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

Harrington rods failed after a short period in service. Metallurgical analysis showed (1) notches were present on the rods, (2) small cracks present in the bent regions of the rod, and (3) the fractures occurred at clamped locations. All of these conditions can shorten the fatigue life by eliminating the crack initiation stage of fatigue and allowing corrosion fatigue to occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. http://www.scoliosis.org/resources/medicalupdates/instrumentationsystems.php. Accessed 20 June 2013

  2. L.A. Shepard et al., Characterization of a failed spinal implant (Harrington rod), in ASM Conference Proceedings, Metals Park (1988), pp. 411–418

  3. ASTM F136-02a, Standard specification for wrought titanium–6 aluminum–4 vanadium ELI (extra low interstitial) alloy for surgical implant applications (UNS R56401), 2002

  4. R. Boyer, E.W. Collings, G. Welsch (eds.), Materials Properties Handbook: Titanium Alloys (ASM International, Materials Park, 1994), pp. 483–636

  5. H.J. Snyder et al., Fatigue fracture of 316L SS screws employed for surgical implanting, in Handbook of Case Histories in Failure Analysis, vol. 1, ed. by K.A. Esakul (ASM International, Materials Park, 1992)

    Google Scholar 

  6. M. Prikryl et al., Role of corrosion in Harrington and Luque rods failure. Biomaterials 10, 109–117 (1989)

    Article  CAS  Google Scholar 

  7. M. Hahn et al., The influence of material and design features on the mechanical properties of transpedicular spinal fixation implants. J. Biomed. Mater. Res. 63, 354–362 (2002)

    Article  CAS  Google Scholar 

  8. H. Stürz et al., Damage analysis of the Harrington Rod fracture after scoliosis operation. Arch. Orthop. Trauma Surg. 95, 113–122 (1979)

    Article  Google Scholar 

  9. J.S. Kirkpatrick et al., Corrosion on spinal implants. J. Spinal Disord. Tech. 18, 247–251 (2005)

    Google Scholar 

  10. A.C. Fraker, Forms of corrosion in implant materials, in Metals Handbook, vol 13, 9th edn. (ASM International, Materials Park, 1987), pp. 1324–1335

  11. L. Aulisa et al., Corrosion of the Harrington’s instrumentation and biological behavior of the rod–human spine system. Biomaterials 3, 246–249 (1982)

    Article  CAS  Google Scholar 

  12. J.B. Brunski et al., Stresses in a Harrington distraction rod: their origin and relationship to fatigue fractures in vivo. J. Biomech. Eng. 105, 101–107 (1983)

    Article  CAS  Google Scholar 

  13. C. Sittig et al., Surface characterization of implant materials c.p. Ti, Ti–6Al–4V and Ti–6Al–4V with different pretreatments. J. Mater. Sci. Mater. Med. 10(1), 35–46 (1999)

    Article  CAS  Google Scholar 

  14. S. Hur, The 360° cold bending of Ti–6Al–4V large diameter seamless tube. JOM 51(6), 28–30 (1999)

    Article  CAS  Google Scholar 

  15. R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials (Wiley, New York, 1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne Reitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reitz, W. Cervical Stent Failure Analysis. J Fail. Anal. and Preven. 13, 678–683 (2013). https://doi.org/10.1007/s11668-013-9749-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-013-9749-3

Keywords

Navigation