Skip to main content
Log in

Superplastic HSLA Steels: Microstructure and Failure

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

Certain materials can show superplasticity when traction tested at temperatures higher than 50% of their melting point and with low strain rates (\( \dot{\varepsilon } \) < 10−2 s−1), showing very high elongations (>100%) without localized necking and mainly intergranular fractures. This behavior requires that the starting grain size is small (<10 μm) so the flow of matter can be non-homogeneous (sliding and rotating of the grain boundaries, accommodated by diffusion). This work presents the superplastic characteristic of shipbuilding steel deformed at 800 °C and a strain rate slower than 10−3 s−1. The fine grain size (5 μm) is obtained when using Nb as a microalloying element and manufactured by controlled rolling processes (three stages). After the superplastic deformation, the steel presents mixed fractures: by decohesion of the hard (pearlite and carbides) and ductile (ferrite) phases and by intergranular sliding of ferrite/ferrite and ferrite/pearlite, just as it happens in stage III of the creep behavior. This is confirmed through the Ashby–Verrall model, according to which the dislocation creep (power-law creep) and diffusion creep (linear-viscous creep) occur simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Backofen, W.A., Turner, I.R., Avery, H.: Superplasticity in an Al–Zn alloy. Trans. ASM 57, 980–990 (1964)

    Google Scholar 

  2. Sherby, O.D., Wadsworth, J., Oyama, T.: Superplasticity: Prerequisites and Phenomenology. Universidad Politécnica de Madrid E.T.S.I.C.C.P., Madrid (1985)

    Google Scholar 

  3. Alden, T.H.: Plastic Deformation of Materials. Review Topics in Superplasticity, pp. 225–266. Academic Press, New York (1975)

    Google Scholar 

  4. González, R., García, J.O., Barbés, M.A., Quintana, M.J., Verdeja, L.F., Verdeja, J.I.: Ultrafine grained HSLA steels for cold forming. J. Iron Steel Res. Int. 17(10), 50–56 (2010)

    Article  Google Scholar 

  5. Avery, D.H., Backofen, W.A.: Trans. ASM 58, 551–562 (1965)

    CAS  Google Scholar 

  6. Ashby, M.F., Verrall, R.A.: Diffusion-accommodated flow and superplasticity. Acta Metall. Mater. 21, 149 (1973)

    Article  CAS  Google Scholar 

  7. Pero-Sanz, J.A.: Science and Materials Engineering. CIE–Dossat 2000, Madrid (2006) (in Spanish)

  8. Broek, C.T.: FutureSteelVehicle: leading edge innovation for steel body structures. Ironmak. Steelmak. 39(7), 477–482 (2012)

    Article  CAS  Google Scholar 

  9. Mukherjee, K., Hazra, S.S., Militzer, M.: Grain refinement in dual-phase steels. Metall. Mater. Trans. A 40A, 2145–2159 (2009)

    Article  CAS  Google Scholar 

  10. Quintana, M.J., Gonzalez, R., Verdeja, L.F., Verdeja, J.I.: Dual-phase ultrafine-grained steels produced by controlled rolling processes. In: Materials Science and Technology (MS&T), Columbus, 16–20 Oct 2011, p. 504

  11. Howe, A.A.: Ultrafine grained steels: industrial prospects. Mater. Sci. Technol. Ser. 16, 1264–1266 (2000)

    Article  CAS  Google Scholar 

  12. Gonzalez, R., Quintana, M.J., Verdeja, L.F., Verdeja, J.I.: Ultrafine grained steels and the n coefficient of strain hardening. Mem. Trab. Difus. Cient. Tec. 9, 45–54 (2011)

    Google Scholar 

  13. Morrison, W.B.: Superplasticity of low-alloy steels. Trans. ASM 61, 423–434 (1968)

    CAS  Google Scholar 

  14. Reed-Hill, R.E.: Creep. In: Physical Metallurgy Principles, 2nd edn, pp. 827–887. D. Van Nostrand Company, New York (1973)

  15. Vetrano, J.S.: Superplasticity: mechanisms and applications. JOM 3, 22 (2001)

    Article  Google Scholar 

  16. Capdevila, C., Amigo, V., Caballero, F.G., García de Andres, C., Salvador, M.D.: Influence of microalloying elements on recrystallization texture of warm-rolled interstitial free steels. Mater. Trans. 51(4), 625–634 (2010)

    Article  CAS  Google Scholar 

  17. Motohashi, Y., Ryukhtin, V., Takaaki, S., Saroun, J.: Influence of flat cavity formation on stress vs. strain and strain rate relations of superplastic deformation in 3Y–TZP. Mater. Trans. 51(3), 567–573 (2010)

    Article  CAS  Google Scholar 

  18. Pero-Sanz, J.A.: Steels: Physical Metallurgy. Selection and Design. CIE–Dossat 2000, Madrid (2004) (in Spanish)

  19. Furuhara, T., Maki, T.: Grain boundary engineering for superplasticity in steels. J. Mater. Sci. 40, 919–926 (2005)

    Article  CAS  Google Scholar 

  20. Vervynckt, S., Verbeken, K., López, B., Jonas, J.J.: Modern HSLA steel and role of non-recrystallisation temperature. Int. Mater. Rev. 57, 187–207 (2012)

    CAS  Google Scholar 

  21. Pero-Sanz, J.A., Sancho, J.P., Verdeja, J.I., Verdeja, L.F.: Ferritic grain size: an ignored factor, in fact, in the failure analysis of the sinking of a famous ship. DYNA 174, 156–161 (2012)

    Google Scholar 

Download references

Acknowledgments

The authors thank the Department of Metal Sheet and Hot Coil of Mittal Arcelor of Gijón–Avilés (Asturias, Spain) for providing samples for this research. Also, thanks to T. Iglesias and B. Mendieta for the preparation of images and figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María José Quintana.

Additional information

This article is an invited paper selected from presentations at the Microscopy & Microanalysis 2012 Annual Meeting, held July 29–August 2, 2012, in Phoenix, Arizona, and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandez, S., Quintana, M.J., García, J.O. et al. Superplastic HSLA Steels: Microstructure and Failure. J Fail. Anal. and Preven. 13, 368–376 (2013). https://doi.org/10.1007/s11668-013-9662-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-013-9662-9

Keywords

Navigation