Advertisement

Journal of Failure Analysis and Prevention

, Volume 13, Issue 2, pp 183–187 | Cite as

Effect of Surface Cooling on Fatigue Life Improvement

  • M. Amiri
  • M. M. Khonsari
Technical Article---Peer-Reviewed

Abstract

In this study, we investigate the influence of surface cooling on the life of specimens undergoing low-to-intermediate-cycle fatigue. The experiments involve rotating-bending tests with Stainless Steel 304L and Steel 4145 specimens. External cooling air is provided via a vortex tube at a constant supply rate. Results are compared with the case of fatigue at room temperature. The results of experiments reveal significant improvement in fatigue life when the surface of the specimen is cooled. A possible explanation for the observed phenomenon is the notion of self-organization within the context of irreversible thermodynamics.

Keywords

Fatigue life enhancement Surface cooling Stainless Steel 304L Steel 4145 

References

  1. 1.
    Mendez, J.: On the effects of temperature and environment on fatigue damage processes in Ti alloys and in stainless steel. Mater. Sci. Eng. A 263, 187–192 (1999)CrossRefGoogle Scholar
  2. 2.
    Wiencek, K., Czarski, A., Skowronek, T.: Fractal characterization of fractured surfaces of a steel containing dispersed Fe3C-carbide phase. Mater. Charact. 46, 235–238 (2001)CrossRefGoogle Scholar
  3. 3.
    Fredj, N.B., Sidhom, H.: Effects of the cryogenic cooling on the fatigue strength of the AISI 304 stainless steel ground components. Cryogenics 46, 439–448 (2006)CrossRefGoogle Scholar
  4. 4.
    Bensely, A., Senthilkumar, D., Mohan Lal, D., Nagarajan, G., Rajadurai, A.: Effect of cryogenic treatment on tensile behavior of case carburized steel-815M17. Mater. Charact. 58, 485–491 (2007)CrossRefGoogle Scholar
  5. 5.
    Franco, L.A.L., Grac, M.L.A., Silva, F.S.: Fractography analysis and fatigue of thermoplastic composite laminates at different environmental conditions. Mater. Sci. Eng. A 488, 505–513 (2008)CrossRefGoogle Scholar
  6. 6.
    Creager, M., Paris, P.C.: Elastic field equations for blunt cracks with reference to stress corrosion cracking. Int. J. Fract. Mech. 3, 247–252 (1967)Google Scholar
  7. 7.
    Radon, J.C., Branco, C.M., Culver, L.E.: Crack blunting and arrest in corrosion fatigue of mild steel. Int. J. Fract. 12, 467–469 (1976)Google Scholar
  8. 8.
    Jaske, C.E., Broek, D., Slater, J.E., Anderson, W.E.: Corrosion Fatigue of Structural Steels in Seawater and for Offshore Applications. Corrosion Fatigue Technology, pp. 19–47. ASTM STP 642. American Society for Testing and Materials, Materials Park, OH (1978)Google Scholar
  9. 9.
    Tu, L.K.L., Seth, B.B.: Threshold corrosion fatigue crack growth in steels. J. Test. Eval. 6, 66–74 (1978)CrossRefGoogle Scholar
  10. 10.
    Nordmark, G.E., Fricke, W.G.: Fatigue crack arrest at low stress intensities in a corrosive environment. J. Test. Eval. 6, 301–303 (1978)CrossRefGoogle Scholar
  11. 11.
    Huang, H., Shaw, W.J.D.: Effect of cold working on the fracture characteristics of mild steel exposed to a sour gas environment. Mater. Charact. 34, 43–50 (1995)CrossRefGoogle Scholar
  12. 12.
    Bolotin, V.V., Shipkov, A.A.: Mechanical aspects of corrosion fatigue and stress corrosion cracking. Int. J. Solids Struct. 38, 7297–7318 (2001)CrossRefGoogle Scholar
  13. 13.
    Azevedo, C.R.F., dos Santos, A.P.: Environmental effects during fatigue testing: fractographic observation of commercially pure titanium plate for cranio-facial fixation. J. Eng. Fail. Anal. 10, 431–442 (2003)CrossRefGoogle Scholar
  14. 14.
    Michalska, J., Sozanska, M., Hetmanczyk, M.: Application of quantitative fractography in the assessment of hydrogen damage of duplex stainless steel. Mater. Charact. 60, 1100–1106 (2009)CrossRefGoogle Scholar
  15. 15.
    Shen, H., Podlaseck, S.E., Kramer, I.R.: Effect of vacuum on the fatigue life of aluminum. Acta Metall. 14, 341–346 (1966)CrossRefGoogle Scholar
  16. 16.
    Duquette, D.J., Gell, M.: The effect of environment on the mechanism of stage I: fatigue fracture. Metal. Trans. 2, 1325–1331 (1971)Google Scholar
  17. 17.
    Mendez, J., Demulsant, X.: Influence of environment on low cycle fatigue damage in Ti–6Al–4V and Ti 6246 titanium alloys. Mater. Sci. Eng. A 219, 202–211 (1996)CrossRefGoogle Scholar
  18. 18.
    Lee, E.U., Vasudevan, A.K., Glinka, G.: Environmental effects on low cycle fatigue of 2024-T351 and 7075-T651 aluminum alloys. Int. J. Fatigue 31, 1938–1942 (2009)CrossRefGoogle Scholar
  19. 19.
    Parker, E.R., Parker, W.J.: Method for reducing the fatigue crack growth rate of cracks in the aluminum alloy fuselage skin of an aircraft structure. Patent No. 5071492 (1991)Google Scholar
  20. 20.
    Tian, H., Liaw, P.K., Fielden, D.E., Jiang, L., Yang, B., Brooks, C.R., Brotherton, M.D., Wang, H., Strizak, J.P., Mansur, L.K.: Effects of frequency on fatigue behavior of type 316 low carbon, nitrogen-added stainless steel in air and mercury for the spallation neutron source. Metall. Mater. Trans. A 37A, 163–173 (2006)CrossRefGoogle Scholar
  21. 21.
    Tobushi, H., Hachisuka, T., Yamada, S., Lin, P.H.: Rotating-bending fatigue of a TiNi shape-memory alloy wire. Mech. Mater. 26, 35–42 (1997)CrossRefGoogle Scholar
  22. 22.
    Hirano, A., Yamamoto, M., Sakaguchi, K., Shoji, T., ida, K.: Effects of water flow rate on fatigue life of carbon steel in simulated LWR environment under low strain rate conditions. J. Pres. Vess. Tech. 125, 52–58 (2003)CrossRefGoogle Scholar
  23. 23.
    Amiri, M., Khonsari, M.M.: Life prediction of metals undergoing fatigue load based on temperature evolution. Mater. Sci. Eng. A 527, 1555–1559 (2010)CrossRefGoogle Scholar
  24. 24.
    Naderi, M., Khonsari, M.M.: An experimental approach to low-cycle fatigue damage based on thermodynamic entropy. Int. J. Solids Struct. 47, 875–880 (2010)CrossRefGoogle Scholar
  25. 25.
    Naderi, M., Amiri, M., Khonsari, M.M.: On the thermodynamic entropy of fatigue fracture. Proc. R. Soc. A 466, 423–438 (2010)CrossRefGoogle Scholar
  26. 26.
    Peckner, D., Bernstein, I.M.: Handbook of stainless steels. McGraw-Hill, New York, NY (1977)Google Scholar
  27. 27.
    Conrad, H., White, J., Cao, W.D., Lu, X.P., Sprecher, A.F.: Effect of electric current pulses on fatigue characteristics of polycrystalline copper. Mater. Sci. Eng. A 145, 1–12 (1991)CrossRefGoogle Scholar
  28. 28.
    Yong, Z., Huacan, F., Xiaodong, F.: Slowing down metal fatigue damage with a magnetic field. Eng. Fract. Mech. 46, 347–352 (1993)CrossRefGoogle Scholar
  29. 29.
    Khonsari, M.M., Amiri, M.: Introduction to thermodynamics of mechanical fatigue. CRC Press, Boca Raton, FL (2013)Google Scholar

Copyright information

© ASM International 2013

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringLouisiana State UniversityBaton RougeUSA

Personalised recommendations