Skip to main content
Log in

Investigation of the Observed Localized Corrosion in an Industrial Steel Cation Exchanger Vessel

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

Cation exchanger (steel vessel), containing polymeric beads as exchange resin, in a process industry is found to be affected from localized “pitting” corrosion during the turnaround. There are two main cycles of such exchanger’s operation, i.e., normal and regeneration cycles, differentiated by passing canal/well water and sulfuric acid solution, respectively. Corrosion rates by Tafel techniques are measured for both these cycles. The different corrosion rates for canal and well water are explained as per reduction reaction equilibrium. During regeneration cycle, certain other tests like cyclic polarization and potentiostatic polarization are also conducted to understand the cause of the localized corrosion. Potentiostatic tests' observations revealed an interesting phenomenon probably explaining the failure not elucidated by the conventional corrosion measurement techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bauman, W.C., Eichhorn, J.: Fundamental properties of a synthetic cation exchange resin. J. Am. Chem. Soc. 69, 2830–2836 (1947)

    Article  CAS  Google Scholar 

  2. Company, D.C.: Dowex ion exchange resins understanding silica removal by ion exchange. Technical Report, Dow Chemical Company

  3. Li, P., Tan, T.C., Lee, J.Y.: Impedance spectra of the anodic dissolution of mild steel in sulphuric acid. Corros. Sci. 38, 1935–1955 (1996)

    Article  CAS  Google Scholar 

  4. Zvezdov, A., Ishigure, K.: The effect of corrosion particles present in water solutions on the behavior of strong acid cation-exchange resins during the process of cobalt removal. Desalination 154, 153–160 (2003)

    Article  CAS  Google Scholar 

  5. Risacher, F., Alonso, H., Salazar, C.: The origin of brines and salts in chilean salars: a hydrochemical review. Earth-Sci. Rev. 63, 249–293 (2003)

    Article  CAS  Google Scholar 

  6. McGarvey, F.X.: Introduction to Industrial Ion Exchange. Syborn Chemical Inc., Birmingham (1988)

    Google Scholar 

  7. Applebaum, S.B.: Deminralization by Ion Exchange. Academic Press, New York (1968)

    Google Scholar 

  8. Prosek, T., Thierry, D., Taxén, C., Maixner, J.: Effect of cations on corrosion of zinc and carbon steel covered with chloride deposits under atmospheric conditions. Corros. Sci. 49, 2676–2693 (2007)

    Article  CAS  Google Scholar 

  9. Sathiyanarayanan, S., Jeyaprabha, C., Muralidharan, S., Venkatachari, G.: Inhibition of iron corrosion in 0.5 M sulphuric acid by metal cations. Appl. Surf. Sci. 252, 8107–8112 (2006)

    Article  CAS  Google Scholar 

  10. Panossian, Z., de Almeida, N.L., de Sousa, R.M.F., de Souza Pimenta, G., Marques, L.B.S.: Corrosion of carbon steel pipes and tanks by concentrated sulfuric acid: a review. Corros. Sci. 58, 1–11 (2012)

    Article  CAS  Google Scholar 

  11. Hines, J.G., Williamson, R.C.: Anodic behavior of mild steel in strong sulphuric acid—I. steady state conditions. Corros. Sci. 4, 201–210 (1964)

    Article  CAS  Google Scholar 

  12. Sueptitz, R., Tschulik, K., Uhlemann, M., Schultz, L., Gebert, A.: Effect of high gradient magnetic fields on the anodic behaviour and localized corrosion of iron in sulphuric acid solutions. Corros. Sci. 53, 3222–3230 (2011)

    Article  CAS  Google Scholar 

  13. Pitzer, K.S., Roy, R.N., Silvester, L.F.: Thermodynamics of electrolytes 7. Sulphuric acid. Thermochim. Acta 532, 65–77 (2012)

    Article  Google Scholar 

  14. Poursaee, A.: Determining the appropriate scan rate to perform cyclic polarization test on the steel bars in concrete. Electrochim. Acta 55, 1200–1206 (2010)

    Article  CAS  Google Scholar 

  15. Silverman, D.C.: Tutorial on cyclic potentiodynamic polarization technique. Corrosion, Paper 229 (1998)

  16. Whitten, K.W., Davis, R.E., Peck, M.L.: General Chemistry, 6th edn. Saunders College Publishing, Orlando (2000)

    Google Scholar 

  17. Damon, G.H.: Acid corrosion of steel; effect of carbon content on the corrodibility of steel in sulfuric acid. Ind. Eng. Chem. 33, 67–69 (1941)

    Article  CAS  Google Scholar 

  18. Sarkar, P., Kumar, P., Manna, M.K., Chakraborti, P.C.: Microstructural influence on the electrochemical corrosion behaviour of dual-phase steels in 3.5% NaCl solution. Mater. Lett. 59, 2488–2491 (2005)

    Article  CAS  Google Scholar 

  19. Sanchez, J., Fullea, J., Andrade, C., Gaitero, J.J., Porro, A.: AFM study of the early corrosion of a high strength steel in a diluted sodium chloride solution. Corros. Sci. 50, 1820–1824 (2008)

    Article  CAS  Google Scholar 

  20. Deyab, M., El-Rehim, S.A., Keera, S.: Study of the effect of association between anionic surfactant and neutral copolymer on the corrosion behaviour of carbon steel in cyclohexane propionic acid. Colloids Surf. A 348, 170–176 (2009)

    Article  CAS  Google Scholar 

  21. Free, M.L.: Understanding the effect of surfactant aggregation on corrosion inhibition of mild steel in acidic medium. Corros. Sci. 44, 2865–2870 (2002)

    Article  CAS  Google Scholar 

  22. Migahed, M.A., Azzam, E.M.S., Al-Sabagh, A.M.: Corrosion inhibition of mild steel in 1 M sulfuric acid solution using anionic surfactant. Mater. Chem. Phys. 85, 273–279 (2004)

    Article  CAS  Google Scholar 

  23. Bosch, R., Hubrecht, J., Bogaerts, W., Syrett, B.: Electrochemical frequency modulation: a new electrochemical technique for online corrosion monitoring. Corrosion 57, 60–70 (2001)

    Article  CAS  Google Scholar 

  24. Solomon, M., Umoren, S., Udosoro, I., Udoh, A.: Inhibitive and adsorption behaviour of carboxymethyl cellulose on mild steel corrosion in sulphuric acid solution. Corros. Sci. 52, 1317–1325 (2010)

    Article  CAS  Google Scholar 

  25. Fekry, A.M., Ameer, M.A.: Electrochemical investigation on the corrosion and hydrogen evolution rate of mild steel in sulphuric acid solution. Int. J. Hydrogen Energy 36, 11207–11215 (2011)

    Article  CAS  Google Scholar 

  26. Amin, M.A., Ibrahim, M.M.: Corrosion and corrosion control of mild steel in concentrated H2SO4 solutions by a newly synthesized glycine derivative. Corros. Sci. 53, 873–885 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the cooperation provided by Mr. Zaheer Anwar at Fauji Fertilizer Corporation Pakistan, and his taking the initiative in industrial academia collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aqeel Ahmad Taimoor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, M.S., Anjum, M.A., Taimoor, A.A. et al. Investigation of the Observed Localized Corrosion in an Industrial Steel Cation Exchanger Vessel. J Fail. Anal. and Preven. 13, 55–62 (2013). https://doi.org/10.1007/s11668-012-9636-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-012-9636-3

Keywords

Navigation