Advertisement

Journal of Failure Analysis and Prevention

, Volume 13, Issue 2, pp 167–176 | Cite as

Thermal–Mechanical Coupled Analysis of a Brake Disk Rotor

  • Ali Belhocine
  • Mostefa Bouchetara
Technical Article---Peer-Reviewed

Abstract

The main purpose of this study is to analyze the thermomechanical behavior of the dry contact between the brake disk and pads during the braking phase. The simulation strategy is based on computer code ANSYS11. The modeling of transient temperature in the disk is actually used to identify the factor of geometric design of the disk to install the ventilation system in vehicles. The thermal–structural analysis is then used with coupling to determine the deformation and the Von Mises stress established in the disk, i.e., the contact pressure distribution in pads. The results are satisfactory when compared to those of the specialized literature.

Keywords

Brake disks Heat flux Heat-transfer coefficient Von Mises stress Contact pressure 

References

  1. 1.
    Milenković, P.D., et al.: The influence of brake pads thermal conductivity on passenger car brake system efficiency. Therm. Sci. 14(Suppl.), S221–S230 (2010)CrossRefGoogle Scholar
  2. 2.
    Belghazi, H.: Analytical solution of unsteady heat conduction in a two-layered material in imperfect contact subjected to a moving heat source, Ph.D. thesis, University of Limoges, Limoges (2010)Google Scholar
  3. 3.
    Nakatsuji, T., Okubo, K., Fujii, T., Sasada, M., Noguchi, Y.: Study on Crack Initiation at Small Holes of One-piece Brake Discs. Society of Automotive Engineers, Inc, Humble, 2002-01-0926 (2002)Google Scholar
  4. 4.
    Valvano, T., Lee, K.: An Analytical Method to Predict Thermal Distortion of a Brake Rotor. Society of Automotive Engineers, Inc, Humble, 2000-01-0445 (2000)Google Scholar
  5. 5.
    Hudson, M.D., Ruhl, R.L.: Ventilated Brake Rotor Air Flow Investigation. Society of Automotive Engineers, Inc, Humble, 1997-01-033 (1997)Google Scholar
  6. 6.
    Denape, J., Laraqi, N.: Aspect thermique du frottement: mise en évidence expérimentale et éléments de modélisation. Mec. Ind. 1, 563–579 (2000)Google Scholar
  7. 7.
    Hamraoui, M.: Thermal behaviour of rollers during the rolling process. Appl. Therm. Eng. 29(11–12), 2386–2390 (2009)CrossRefGoogle Scholar
  8. 8.
    Hamraoui, M., Zouaoui, Z.: Modelling of heat transfer between two rollers in dry friction. Int. J. Therm. Sci. 48(6), 1243–1246 (2009)CrossRefGoogle Scholar
  9. 9.
    Laraqi, N.: Velocity and relative contact size effect on the thermal constriction resistance in sliding solids. ASME J. Heat Transf. 119, 173–177 (1997)CrossRefGoogle Scholar
  10. 10.
    Yapıcı, H., Genç, M.S., Özısık, G.: Transient temperature and thermal stress distributions in a hollow disk subjected to a moving uniform heat source. J. Therm. Stress 31, 476–493 (2008)CrossRefGoogle Scholar
  11. 11.
    Laraqi, N., Alilat, N., Garcia-de-Maria, J.M., Baïri, A.: Temperature and division of heat in a pin-on-disc frictional device—exact analytical solution. Wear 266(7–8), 765–770 (2009)CrossRefGoogle Scholar
  12. 12.
    Bauzin, J.G., Laraqi, N.: Simultaneous estimation of frictional heat flux and two thermal contact parameters for sliding solids. Numer. Heat Transf. 45(4), 313–328 (2004)CrossRefGoogle Scholar
  13. 13.
    Baïri, A., Garcia-de-Maria, J.M., Laraqi, N.: Effect of thickness and thermal properties of film on the thermal behavior of moving rough interfaces. Eur. Phys. J. Appl. Phys. 26(1), 29–34 (2004)CrossRefGoogle Scholar
  14. 14.
    Mijuca, D.M., Iberna, A.M., Medjo, B.I.: A new multifield finite element method in steady state heat analysis. Therm. Sci. 9(1), 111–130 (2005)CrossRefGoogle Scholar
  15. 15.
    Zhang, L., Yang, Q., Weichert, D., Tan, N.: Simulation and analysis of thermal fatigue based on imperfection model of brake discs. Beijing Jiaotong Univ. PAMM Proc. Appl. Math. Mech. 9, 533–534 (2009)CrossRefGoogle Scholar
  16. 16.
    Fiche U.I.C. 541-3: FREIN—Frein à disques et garnitures de frein à disques, 4e édition, 1 July 1993Google Scholar
  17. 17.
    Saumweber, E.: Temperaturberechnung in Bremsscheiben fürein beliebiges Fahrprogramm, Leichtbau der Verkehrsfahrzeuge, Heft 3, Augsburg (1969)Google Scholar
  18. 18.
    Cruceanu, C.: Frâne pentru vehicule feroviare (Brakes for railway vehicles). MATRIXROM (ed.), Bucureşti, ISBN 978-973-755-200-6 (2007)Google Scholar
  19. 19.
    Reimpel, J.: Technologie de freinage. Vogel Verlag, Würzburg (1998)Google Scholar
  20. 20.
    Gotowicki, P.F., Nigrelli, V., Mariotti, G.V.: Numerical and experimental analysis of a pegs-wing ventilated disk brake rotor, with pads and cylinders. In: 10th EAEC European Automotive Congress—Paper EAEC05YUAS04—P 5, June (2005)Google Scholar
  21. 21.
    Yu, H., et al.: Study on temperature distribution due to freezing and thawing at the Fengman concrete gravity dam. Therm. Sci. 15(Suppl. 1), s27–s32 (2011)CrossRefGoogle Scholar
  22. 22.
    Sergerlind, L.J.: Applied Finite Element Analysis. Wiley, New York (1984)Google Scholar
  23. 23.
    Hinton, E., Owen, D.R.J.: An Introduction to Finite Element Computations. Pineridge Press, Swansea (1981)Google Scholar
  24. 24.
    Versteeg, H.K., Malalasekera, W.: An Introduction to Computational Fluid Mechanics. The Finite Volume Method. Pearson, Prentice Hall (1995)Google Scholar
  25. 25.
    Ansys v.11 User’Manual Guide. ANSYS, Inc., Houston, USA (1996)Google Scholar
  26. 26.
    Nouby, M., Srinivasan, K. (2009). Parametric studies of disc brake squeal using finite element approach. J. Mek. No. 29, 52–66 (2009)Google Scholar

Copyright information

© ASM International 2013

Authors and Affiliations

  1. 1.Faculty of Mechanical EngineeringUniversity of Sciences and the Technology of Oran (USTO)OranAlgeria
  2. 2.Ain FaresAlgeria

Personalised recommendations