Advertisement

Journal of Failure Analysis and Prevention

, Volume 12, Issue 6, pp 707–718 | Cite as

Finite Element Analysis of Plastic Collapse and Crack Behavior of Steel Pressure Vessels and Piping Using XFEM

  • P. F. Liu
  • B. J. Zhang
  • J. Y. Zheng
Technical Article---Peer-Reviewed

Abstract

This article aims to study the plastic collapse and crack behavior of steel pressure vessels and piping using the extended finite element method (XFEM). First, the plastic collapse loads of steel cylinders under the internal pressure are predicted, and the numerical results are compared with experimental data. In addition, the computational efficiency and accuracy using different methods including the XFEM, nonlinear stabilization algorithm, and arc-length algorithm are compared. Particularly, effects of different initial crack configurations, element sizes, damage initiation, and evolution criteria on the crack behaviors are investigated. Second, the crack initiation and propagation properties of buried pipelines due to deflection in the landslide area are explored, and the numerical results are compared between testing data and current study. Besides, the effects of internal pressure, wall thickness, soil property, and width of landslide area on the critical deflection displacement of buried pipeline are studied. This research provides a fundamental support for safety evaluation and life prediction of pressurized structures.

Keywords

Extended finite element method Crack initiation and propagation Failure analysis Plastic collapse 

Nomenclature

a

Crack depth

D/t ratio

Ratio of diameter to thickness

E

Young’s modulus

G

Energy release rate

GIC, GIIC, GIIIC

Critical energy release rates of three fracture modes

GC

Critical equivalent energy release rates based on mixed-mode criteria

l

Crack length

Pi

Internal pressure

Rm

Tensile strength

Umax

Maximum deflection displacement along the axial direction

\( \sigma_{{\hbox{Max} {\text{ps}}}} \)

Maximum principal stress as damage initiation criterion

Notes

Acknowledgement

This research is supported by the National High Technology Research and Development Program of China (863 Program, Grant No. 2012AA040103), the Special Funds for Quality Supervision Research in the Public Interest (Grant No. 201210242) and the Fundamental Research Funds for the Central Universities.

References

  1. 1.
    Mathur, K.K., Needleman, A., Tvergaard, V.: Ductile failure analyses on massively parallel computers. Comput. Meth. Appl. Mech. Eng. 119(3), 283–309 (1994)CrossRefGoogle Scholar
  2. 2.
    de Borst, R.: Challenges in computational materials science: multiple scales, multi-physics and evolving discontinuities. Comput. Mater. Sci. 43(1), 1–15 (2008)CrossRefGoogle Scholar
  3. 3.
    ASME BPVC VIII-3. Alternative Rules for Construction of High Pressure Vessels (2010)Google Scholar
  4. 4.
    Liu, P.F., Zheng, J.Y., Miao, C.J.: Calculations of plastic collapse load of pressure vessel using FEA. J. Zhejiang Univ. Sci. A 9(7), 900–906 (2008)CrossRefGoogle Scholar
  5. 5.
    Liu, P.F., Zheng, J.Y.: Progressive failure analysis of carbon fiber/epoxy composite laminates using continuum damage mechanics. Mater. Sci. Eng. A 485(1), 711–717 (2008)CrossRefGoogle Scholar
  6. 6.
    Liu, P.F., Zheng, J.Y.: Review on Methodologies of Progressive Failure Analysis of Composite Laminates. Continuum Mechanics, Chap. 11. Nova Science Publishers, New York (2009)Google Scholar
  7. 7.
    Liu, P.F., Zheng, J.Y.: Recent developments on damage modeling and finite element analysis for composite laminates: a review. Mater. Design 31(8), 3825–3834 (2010)CrossRefGoogle Scholar
  8. 8.
    Zheng, J.Y., Liu, P.F.: Elasto-plastic stress analysis and burst strength evaluation of Al-carbon fiber/epoxy composite cylindrical laminates. Comput. Mater. Sci. 42(3), 453–461 (2008)CrossRefGoogle Scholar
  9. 9.
    Xu, P., Zheng, J.Y., Liu, P.F.: Finite element analysis of burst pressure of composite hydrogen storage vessels. Mater. Design 30(7), 2295–2301 (2009)CrossRefGoogle Scholar
  10. 10.
    Siegmund, T.: A numerical study of transient fatigue crack growth by use of an irreversible cohesive zone model. Int. J. Fatigue 26(9), 929–939 (2004)CrossRefGoogle Scholar
  11. 11.
    Roe, K.L., Siegmund, T.: An irreversible cohesive zone model for interface fatigue crack growth simulation. Eng. Fract. Mech. 70(2), 209–232 (2003)CrossRefGoogle Scholar
  12. 12.
    Bouvard, J.L., Chaboche, J.L., Feyel, F., et al.: A cohesive zone model for fatigue and creep–fatigue crack growth in single crystal super alloys. Int. J. Fatigue 31(5), 868–879 (2009)CrossRefGoogle Scholar
  13. 13.
    Liu, P.F., Hou, S.J., Chu, J.K., et al.: Finite element analysis of postbuckling and delamination of composite laminates using virtual crack closure technique. Compos. Struct. 93(6), 1549–1560 (2011)CrossRefGoogle Scholar
  14. 14.
    Fawaz, S.A.: Application of the virtual crack closure technique to calculate stress intensity factors for through cracks with an elliptical crack front. Eng. Fract. Mech. 59(3), 327–342 (1998)CrossRefGoogle Scholar
  15. 15.
    Servetti, G., Zhang, X.: Predicting fatigue crack growth rate in a welded butt joint: the role of effective R ratio in accounting for residual stress effect. Eng. Fract. Mech. 76(11), 1589–1602 (2009)CrossRefGoogle Scholar
  16. 16.
    Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45(5), 601–620 (1999)CrossRefGoogle Scholar
  17. 17.
    Belytschko, T., Chen, H., Xu, J., et al.: Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int. J. Numer. Methods Eng. 58(12), 1873–1905 (2003)CrossRefGoogle Scholar
  18. 18.
    Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46(1), 131–150 (1999)CrossRefGoogle Scholar
  19. 19.
    Moës, N., Belytschko, T.: Extended finite element method for cohesive crack growth. Eng. Fract. Mech. 69(7), 813–833 (2002)CrossRefGoogle Scholar
  20. 20.
    Sukumar, N., Moës, N., Moran, B., et al.: Extended finite element method for three-dimensional crack modeling. Int. J. Numer. Methods Eng. 48(11), 1549–1570 (2000)CrossRefGoogle Scholar
  21. 21.
    Sukumar, N., Huang, Z.Y., Prévost, J.H., et al.: Partition of unity enrichment for bimaterial interface cracks. Int. J. Numer. Methods Eng. 59(8), 1075–1102 (2003)CrossRefGoogle Scholar
  22. 22.
    Giner, E., Sukumar, N., Tarancón, J.E.: An Abaqus implementation of the extended finite element method. Eng. Fract. Mech. 76(3), 347–368 (2009)CrossRefGoogle Scholar
  23. 23.
    Campilho, R.D.S.G., Banea, M.D., Chaves, F.J.P., et al.: eXtended finite element method for fracture characterization of adhesive joints in pure mode I. Comput. Mater. Sci. 50(4), 1543–1549 (2011)CrossRefGoogle Scholar
  24. 24.
    Golewski, G.L., Golewski, P., Sadowski, T.: Numerical modelling crack propagation under Mode II fracture in plain concretes containing siliceous fly-ash additive using XFEM method. Comput. Mater. Sci. 62, 75–78 (2012)CrossRefGoogle Scholar
  25. 25.
    Wang, Z.Q., Zhou, S., Zhang, J.F.: Progressive failure analysis of bolted single-lap composite joint based on extended finite element method. Mater. Design 37, 582–588 (2012)CrossRefGoogle Scholar
  26. 26.
    Xu, Y.J., Yuan, H.: Applications of normal stress dominated cohesive zone models for mixed-mode crack simulation based on extended finite element methods. Eng. Fract. Mech. 78, 544–558 (2011)CrossRefGoogle Scholar
  27. 27.
    Comi, C., Mariani, S., Perego, U.: An extended FE strategy for transition from continuum damage to mode I cohesive crack propagation. Int. J. Numer. Anal. Methods Geomech. 31, 213–238 (2007)CrossRefGoogle Scholar
  28. 28.
    Benzeggagh, M.L., Kenane, M.: Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos. Sci. Technol. 56(4), 439–449 (1996)CrossRefGoogle Scholar
  29. 29.
    Mojiri, S. Numerical Analysis of Cohesive Crack Growth Using Extended Finite Element Method (X-FEM). Master of Science Thesis. Institut de Recherche en Génie Civil et Méchanique, France (2010)Google Scholar
  30. 30.
    Liu, P.F., Zheng, J.Y., Zhang, B.J.: Failure analysis of natural gas buried X65 steel pipeline under deflection load using finite element method. Mater. Des. 31(3), 1384–1391 (2010)CrossRefGoogle Scholar
  31. 31.
    Zheng, J.Y., Zhang, B.J., Liu, P.F.: Failure analysis and safety evaluation of buried pipeline due to deflection of landslide process. Eng. Fail. Anal. 25, 156–168 (2012)CrossRefGoogle Scholar
  32. 32.
    BS EN 1594. Gas supply systems—Pipelines for maximum operating pressure over 16 bar—Functional requirements. British Standards Policy and Strategy Committee (2009)Google Scholar
  33. 33.
    ASME B31.8. Gas Transmission and Distribution Piping Systems. The American Society of Mechanical Engineers (2010)Google Scholar

Copyright information

© ASM International 2012

Authors and Affiliations

  1. 1.Institute of Process EquipmentZhejiang UniversityHangzhouChina

Personalised recommendations