Journal of Failure Analysis and Prevention

, Volume 12, Issue 2, pp 130–138 | Cite as

Study of Failure Modes Affecting a Crimped Nut Related to Forging Process

  • N. Hentati
  • A. Makni
  • R. Elleuch
Case History---Peer-Reviewed


In this current study, the problems caused by hot and cold forging—the two successive manufacturing process of a crimped nut—were investigated and resolved. The forged material is a leaded brass (CuZn39Pb2). Concerning the problem faced during hot forging (stamping), we chose a methodology based on the reproduction of industrial phenomena in laboratory scale. The study of this problem was conducted by micrographic and chemical analyses. For cold forging (crimping), a mechanical and microstructural characterization of the brass was performed in various conditions of heat treatment and shaping. Two items were proven in this study: (1) the use of graphite reduced the oxidation of the brass which was heated at the forging temperature to quarter; and (2) the heat treatment and annealing at 300°C avoided cracking during cold forging.


Failure mode Crimped nut Forging process Heat treatment 


  1. 1.
    Chen, H.Q., Wang, Q.C., Guo, H.G.: Research on the casting–forging precision forming process of alternator poles. J. Mater. Process. Technol. 129, 330–332 (2002)CrossRefGoogle Scholar
  2. 2.
    Kopp, R.: Some current development trends in metal-forming technology. J. Mater. Process. Technol. 60, 1–9 (1996)CrossRefGoogle Scholar
  3. 3.
    Takahashi, N., Trillat, J.J.: Formation de monocristaux de Cu2O et ZnO par oxydation sélective d’un film de laiton α préparé par évaporation sous vide. Acta Métall. 4, 201–205 (1956)CrossRefGoogle Scholar
  4. 4.
    Jennane, A., Lexcellent, C., Moya, G., Bemardini, J.: Rôle éventuel des bilacunes sur l’autodiffusion volumique dans dans les phases A3 de structure A2. Journal de Physique IV Colloque 2.supplément au Journal de Physique III. 6 (1996)Google Scholar
  5. 5.
    Chung, Y.M., Jung, M.J., Lee, S.J., Han, J.G., Park, C.G., Ahn, S.H., KIm, J.G.: A study of plasma oxidation effects on the passive layer synthesis for the corrosion resistance of (α + β) brass. Surf. Coat. Technol. 193, 243–248 (2005)CrossRefGoogle Scholar
  6. 6.
    Panjan, P., Urankar, I., Navinsek, B., Tercelj, M., Turk, R., Cekada, M., Leskovsek, V.: Improvement of hot forging tools with duplex treatment. Surf. Coat. Technol. 151–152, 505–509 (2002)CrossRefGoogle Scholar
  7. 7.
    Yang, L., Shivpuri, R.: Spreading behavior of water based graphite lubricants on hot die surfaces. CIRP Ann. Manuf. Technol. 55, 299–302 (2006)CrossRefGoogle Scholar
  8. 8.
    Basu, P., Broughton, J., Elliott, D.E.: Combustion of single coal particles in fluidized beds, fluidized combustion. Inst. Fuel Symp. Ser. 1, AD1–AD10 (1995)Google Scholar
  9. 9.
    Smithells, C.J.: Metals Reference Book, 2nd edn., p. 592. Interscience, New York (1955)Google Scholar
  10. 10.
    Ao, X., Wang, H., Wei, Y.: Novel method for metallic zinc and synthesis gas production in alkali molten carbonates. Energy Convers. Manag. 49, 2063–2068 (2008)CrossRefGoogle Scholar
  11. 11.
    Sljapic, V., Hartley, P., Pillinger, I.: Observations on fracture in axi-symmetric and three-dimensional cold upsetting of brass. J. Mater. Process. Technol. 125–126, 267–274 (2002)CrossRefGoogle Scholar
  12. 12.
    Rao, A.V., Ramakrishnan, N., Kumar, R.K.: A comparative evaluation of the theoretical failure criteria for workability in cold forging. J. Mater. Process. Technol. 142, 29–42 (2003)CrossRefGoogle Scholar
  13. 13.
    Le Maout, N.: Process analysis of crimping metal sheet. Thesis, University of South Brittany (2009)Google Scholar
  14. 14.
    Caillet, N.: Prise en compte des spécificités des pièces forgées en fatigue illimitée. Thesis, École des Mines de Paris (2007)Google Scholar
  15. 15.
    Guillet, L., Poupeau, P.: Theory of Transformations in Solid State of Metals and Metallic Alloys. Pordas-Belgium (1973)Google Scholar
  16. 16.
    Mungi, M.P., Rasane, S.D., Dixit, P.M.: Residual stresses in cold axisymmetric forging. J. Mater. Process. Technol. 142, 256–266 (2003)CrossRefGoogle Scholar
  17. 17.
    Barralis, J., Maeder, G.: Précis de métallurgie: élaboration, structures-propriétés et normalisation, 6ème édition. AFNOR–NATHAN, Paris (1997)Google Scholar
  18. 18.
    Benard, J., Michel, A., Philibert, J., Talbot, J.: Métallurgie générale, 2ème édition. MASSON, Paris (1984)Google Scholar
  19. 19.
    Paul DeGarmo, E., Black, J.T., Kohser, R.A.: Materials and Processes in Manufacturing, 9th edn. Wiley, New York (2003)Google Scholar
  20. 20.
    Murry, G.: Aide mémoire Métallurgie Métaux-Alliages-Propriétés. DUNOD, Paris (2004)Google Scholar
  21. 21.
    Bensaada, S.: Recrystallization, precipitation and discontinuous dissolution phenomena of Ni-1,4 at.%In, Ni-6,2 at.%In, Al-15 at.%Zn, Al-30 weight.%Zn, Cu-4,6 at.%In et Mg-8 weight.%Al alloys. Thesis, Faculty of Science and Engineering-Department of Mechanical Engineering, Algeria (2005)Google Scholar
  22. 22.
    Sunter, B.J., Burman, N.M.: J. Aust. Inst. Met. 17, 91–100 (1972)Google Scholar
  23. 23.
    McQueen, H.J.: Development of dynamic recrystallization theory. Mater. Sci. Eng. A 387–389, 203–208 (2004)Google Scholar

Selected Reference

  1. 24.
    Le Coze, J.: Cast history. Descriptions of XVIIIe century. Part I: cast production. C. R. Chim. 17, 1289–1300 (2008)CrossRefGoogle Scholar

Copyright information

© ASM International 2012

Authors and Affiliations

  1. 1.Laboratoire des Systèmes Electro-Mécaniques (LASEM)Ecole Nationale d’Ingénieurs de SfaxSfaxTunisia

Personalised recommendations