Skip to main content
Log in

Failure Analysis and Life Assessment of Coating: The Use of Mixed Mode Stress Intensity Factors in Coating and Other Surface Engineering Life Assessment

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

Unlike metals, where failure analysis and life assessment methods are quite established, the failure analysis and life assessment of coatings are often underrated and disregarded. This research encourages failure analysts to realize and avail the opportunity provided by an alternative approach. The authors use energy density mechanics concepts to develop a new parameter in coating blistering. A mixed mode stress intensity factor is used as a basis for the derivation. This new parameter will be useful for the researchers and practitioners engaged in coating life assessment. It is recommended that the assessor combines field-determined adhesion strength values and blister evaluation, together with laboratory-derived strain energy density data, to quantitatively predict remaining coating life. This approach also provides a tool in failure analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lee, T.H., Lee, U.C.: Safeguard assessment for life extension in nuclear power plants (NPPS) using a production function. Nucl. Eng. Des. 241(3), 826–831 (2011)

    Article  Google Scholar 

  2. Andrae, A., Andersen, O.: Life cycle assessment of integrated circuit packaging technologies. Int. J. Life Cycle Assess. 16(3), 258–267 (2011)

    Google Scholar 

  3. Puri, P., Compston, P., Pantano, V.: Life cycle assessment of Australian automotive door skins. Int. J. Life Cycle Assess. 14(5), 420–428 (2010)

    Google Scholar 

  4. Committee on Research Opportunities in Corrosion Science, Engineering, and National Research Council: Research Opportunities in Corrosion Science and Engineering. National Academies Press (2011)

  5. Gustafsson, L., Börjesson, P.: Life cycle assessment in green chemistry. Int. J. Life Cycle Assess. 12(3), 151–159 (2007)

    CAS  Google Scholar 

  6. Unnanuntana, A., Gladnick, B., Donnelly, E., Lane, J.: The assessment of fracture risk. J. Bone Joint Surg. Am. Vol. 92(3), 743–753 (2010)

    Article  Google Scholar 

  7. Tay, F.R., Lai, C., Chersoni, S.: Osmotic blistering in enamel bonded with one-step self-etch adhesives. J. Dent. Res. 83(7), 290–295 (2004)

    CAS  Google Scholar 

  8. Haillant, O.: Accelerated weathering testing principles to estimate the service life of organic pv modules. Sol. Energy Mater. Sol. Cells 95(5), 1284–1292 (2011)

    Google Scholar 

  9. ASTM: Standard practice for cyclic salt fog/uv exposure of painted metal (alternating exposures in a fog/dry cabinet and a UV/condensation cabinet). In: ASTM:D5894. ASTM International Publisher, West Conshohocken (2009)

  10. ASTM: Standard practice for modified salt spray (fog) testing. In: ASTM:G5. ASTM International Publisher, West Conshohocken (2009)

  11. ASTM: Standard test method for evaluation of painted or coated specimens subjected to corrosive environments. In: ASTM:D1654. ASTM International Publisher, West Conshohocken (2008)

  12. Skerry, B.S., Simpson, C.H., Wilson, G.R.: Combined corrosion/weathering testing of coated steel products for automotive applications. In: Proceedings—Society of Automotive Engineers, pp. 143–153 (1991)

  13. Simpson, C.H., Ray, C.J., Skerry, B.S.: Accelerated corrosion testing of industrial maintenance paints using a cyclic corrosion weathering method. J. Prot. Coat. Linings 8(5), 28–36 (1991). Cited By (since 1996): 23

    Google Scholar 

  14. Chong, S.-L.: Comparison of accelerated tests for steel bridge coatings in marine environments. J. Prot. Coat. Linings 14(3) (1997)

  15. Volokh, K.Y.: Nonlinear elasticity for modeling fracture of isotropic brittle solids. J. Appl. Mech. 71(1), 141–143 (2004)

    Article  Google Scholar 

  16. Greenwood, J.A., Johnson, K.L.: The mechanics of adhesion of viscoelastic solids. Philos. Mag. A 43(3), 697–711 (1981)

    Article  CAS  Google Scholar 

  17. Gerberich, W.W., Cordill, M.J.: Physics of adhesion. Rep. Prog. Phys. 69(7), 2157–2203 (2006)

    Article  CAS  Google Scholar 

  18. Kanis, J., Johansson, H., Oden, A., McCloskey, E.: Assessment of fracture risk. Eur. J. Radiol. 71(3), 392–397 (2009)

    Article  Google Scholar 

  19. Duan, K., Hu, X., Stachowiak, G.: Modified essential work of fracture model for polymer fracture. Compos. Sci. Technol. 66(16), 3172–3178 (2006)

    Article  CAS  Google Scholar 

  20. Volinsky, A., Vella, J., Gerberich, W.: Fracture toughness, adhesion and mechanical properties of low-k dielectric thin films measured by nanoindentation. Thin Solid Films 429(1–2), 201–210 (2003)

    Article  CAS  Google Scholar 

  21. Schmidt, I., Fleck, N.A.: Ductile fracture of two-dimensional cellular structures—dedicated to Prof. Dr.-Ing. D. Gross on the occasion of his 60th birthday. Int. J. Fract. 111(4), 327–342 (2001)

    Article  Google Scholar 

  22. Gao, H.: Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials. Int. J. Fract. 138(1–4), 101–137 (2006)

    Article  Google Scholar 

  23. Zuo, J., Sutton, M.A., Deng, X.: Basic studies of ductile failure processes and implications for fracture prediction. Fatigue Fract. Eng. Mater. Struct. 27, 231–243 (2004)

    Article  Google Scholar 

  24. Togashi, H., Sakisaka, T., Takai, Y.: Cell adhesion molecules in the central nervous system. Cell Adhes. Migr. 3(1), 29–35 (2009)

    Article  Google Scholar 

  25. Dias da Costa, D., Alfaiate, J., Sluys, L., J’ulio, E.: A comparative study on the modelling of discontinuous fracture by means of enriched nodal and element techniques and interface elements. Int. J. Fract. 161(1), 97–119 (2010)

    Article  Google Scholar 

  26. Chen, J., Lee, J.D.: Multiscale modeling of fracture of MgO: sensitivity of interatomic potentials. Theor. Appl. Fract. Mech. 53(1), 74–79 (2010)

    Article  CAS  Google Scholar 

  27. Zhang, J., Cole, P., Nagpal, U., Macosko, C., Lodge, T.: Direct correlation between adhesion promotion and coupling reaction at immiscible polymer-polymer interfaces. J. Adhes. 82(9), 887–902 (2006)

    Article  CAS  Google Scholar 

  28. Lilliu, G., van Mier, J.: 3D lattice type fracture model for concrete. Eng. Fract. Mech. 70(7–8), 927–941 (2003)

    Article  Google Scholar 

  29. Bolander, J., Saito, S.: Fracture analyses using spring networks with random geometry. Eng. Fract. Mech. 61(5–6), 569–591 (1998)

    Article  Google Scholar 

  30. Jirásek, M., Bažant, Z.: Macroscopic fracture characteristics of random particle systems. Int. J. Fract. 69(3), 201–228 (1994)

    Article  Google Scholar 

  31. Cho, K., Cho, E.: Effect of the microstructure of copper oxide on the adhesion behavior of epoxy/copper leadframe joints. J. Adhes. Sci. Technol. 14, 1333–1353 (2000)

    Article  CAS  Google Scholar 

  32. Gent, A.N., Schultz, J.: Effect of wetting liquids on the strength of adhesion of viscoelastic material. J. Adhes. 3(4), 281–294 (1972)

    Article  CAS  Google Scholar 

  33. Lee, H.Y., Qu, J.: Microstructure, adhesion strength and failure path at a polymer/roughened metal interface. J. Adhes. Sci. Technol. 17, 195–215 (2003)

    Article  CAS  Google Scholar 

  34. Azari, S., Eskandarian, M., Papini, M., Schroeder, J.A., Spelt, J.K.: Fracture load predictions and measurements for highly toughened epoxy adhesive joints. Eng. Fract. Mech. 76(13), 2039–2055 (2009)

    Article  Google Scholar 

  35. McGeorge, D.: Inelastic fracture of adhesively bonded overlap joints. Eng. Fract. Mech. 77(1), 1–21 (2010)

    Article  Google Scholar 

  36. Leguillon, D., Piat, R.: Fracture of porous materials—influence of the pore size. Eng. Fract. Mech. 75(7), 1840–1853 (2008)

    Article  Google Scholar 

  37. Majumdar, J.D.: Prospects and future applications for diode lasers in surface engineering. Surf. Eng. 23(2), 73–75 (2007)

    Article  Google Scholar 

  38. Podgornik, B., Vizintin, J., Hogmark, S.: Improvement in galling performance through surface engineering. Surf. Eng. 22(4), 235–238 (2006)

    Article  CAS  Google Scholar 

  39. Esfandiari, M., Dong, H.: Plasma surface engineering of precipitation hardening stainless steels. Surf. Eng. 22(2), 86–92 (2006)

    Article  CAS  Google Scholar 

  40. Sharma, A.K.: Surface engineering for thermal control of spacecraft. Surf. Eng. 21(3), 249–253 (2005)

    Article  CAS  Google Scholar 

  41. Nikolenko, S., Kuz’menko, A., Timakov, D., Abakymov, P.: Nanostructuring a steel surface by electrospark treatment with new electrode materials based on tungsten carbide. Surf. Eng. Appl. Electrochem. 47(3), 217–224 (2011)

    Article  Google Scholar 

  42. Shrestha, S.: Magnesium and surface engineering. Surf. Eng. 26(5), 313–316 (2010)

    Article  CAS  Google Scholar 

  43. Xu, B.S.: Development of surface engineering in china. Surf. Eng. 26(1–2), 123–125 (2010)

    Article  CAS  Google Scholar 

  44. Bell, T.: Thermochemical surface engineering 2005. Surf. Eng. 21(3), 161–162 (2005)

    Article  CAS  Google Scholar 

  45. Dongli, F.: Ifhtse global 21: heat treatment and surface engineering in the first decades of the twenty-first century: Part 2 heat treatment in china: present and future. Int. Heat Treat. Surf. Eng. 1(2), 53–59 (2007)

    Google Scholar 

  46. Ivanov, Yu., Kolubaeva, Yu., Konovalov, S., Koval’, N., Gromov, V.: Modification of steel surface layer by electron beam treatment. Met. Sci. Heat Treat. 1112, 569–574 (2008)

    Google Scholar 

  47. Stepanov, A.L., Popok, V.N.: Nanostructuring of silicate glass under low-energy Ag-ion implantation. Surf. Sci. 566–568(Part 2), 1250–1254 (2004)

    Article  Google Scholar 

  48. Raeker, T., Depristo, A.: Theoretical studies of dynamical phenomena in epitaxial surface systems. Surf. Sci. 248(1–2), 134–146 (1991)

    Article  CAS  Google Scholar 

  49. Du, H., Wei, Y., Lin, W., Liu, Z., Hou, L., Yang, W., An, Y.: One way of surface alloying treatment on iron surface based on surface mechanical attrition treatment and heat treatment. Appl. Surf. Sci. 255(20), 8660–8666 (2009)

    Google Scholar 

  50. Trtica, M., Gakovic, B., Batani, D., Desai, T., Panjan, P., Radak, B.: Surface modifications of a titanium implant by a picosecond Nd:YAG laser operating at 1064 and 532 nm. Appl. Surf. Sci. 253(5), 2551–2556 (2006)

    Article  CAS  Google Scholar 

  51. Khosroshahi, M.E., Mahmoodi, M., Tavakoli, J.: Characterization of Ti6Al4V implant surface treated by Nd:YAG laser and emery paper for orthopaedic applications. Appl. Surf. Sci. 253(21), 8772–8781 (2007)

    Article  CAS  Google Scholar 

  52. Cakmak, M., Srivastava, G.P.: Theoretical study of the GaAs(110)-(1x1)-H2S surface. Surf. Sci. 402–404, 658–662 (1998)

    Article  Google Scholar 

  53. Ferguson, P., Wallis, D.F., Hauvet, C.: Surface plasma waves in the noble metals. Surf. Sci. 82(1), 255–269 (1979)

    Article  CAS  Google Scholar 

  54. Yamada, T., Harada, N., Kitahara, K., Moritani, A.: Study of mechanism of plasma surface modifications in si by spectroscopic ellipsometry. Surf. Coat. Technol. 174–175, 854–857 (2003)

    Article  Google Scholar 

  55. Whitmore, L.: Surface structure of zinc oxide (?), using an atomistic, semi-infinite treatment. Surf. Sci. 498(1–2), 135–146 (2002)

    Article  CAS  Google Scholar 

  56. Gao, L., Liu, S.: Cross-linked polyacrylamide coating for capillary isoelectric focusing. Anal. Chem. 76(24), 7179–7186 (2004)

    Article  CAS  Google Scholar 

  57. Prawoto, Y.: Application of Linear Elastic Fracture Mechanics in Materials Science and Engineering. Lulu Enterprise, Raleigh (2011)

    Google Scholar 

  58. Prawoto, Y., Kamsah, N., Mat Yajid, M.A., Ahmad, Z.: Energy density mechanics applied to coating blistering problems. Theor. Appl. Fract. Mech. 56, 89–94 (2011)

    Google Scholar 

  59. Rice, J.: Some remarks on elastic crack-tip stress field. Int. J. Solids Struct. 8, 751–758 (1972)

    Article  Google Scholar 

  60. Bueckner, H.F.: On a class of singular integral equations. J. Math. Anal. Appl. 14(3), 392–426 (1966)

    Article  Google Scholar 

  61. Bueckner, H.F.: Weight functions and fundamental fields for the penny-shaped and the half-plane crack in three-space. Int. J. Solids Struct. 23(1), 57–93 (1987)

    Article  Google Scholar 

  62. Bueckner, H.F.: Observations on weight functions. Eng. Anal. Bound. Elem. 6(1), 3–18 (1989)

    Article  Google Scholar 

  63. Sih, G.C., Moyer Jr., E.T.: Path dependent nature of fatigue crack growth. J. Eng. Fract. Mech. 3(17), 643–652 (1983)

    Google Scholar 

  64. Moyer Jr., E.T., Sih, G.C.: Fatigue analysis of an edge crack specimen: hysteresis strain energy density. J. Eng. Fract. Mech. 4(19), 269–280 (1984)

    Google Scholar 

  65. Sih, G.C., Jeong, D.Y.: Hysteresis loops predicted by isoenergy density theory for polycrystals. Part II: Cyclic heating and cooling effects predicted from non-equilibrium theory for 6061-T6 aluminum, SAE 4340 steel and Ti–8Al–1Mo–1V titanium cylindrical bars. Theor. Appl. Fract. Mech. 41, 267–289 (2004)

    Google Scholar 

  66. Sih, G.C., Jeong, D.Y.: Hysteresis loops predicted by isoenergy density theory for polycrystals. Part I: fundamentals of non-equilibrium thermal mechanical coupling effects. Theor. Appl. Fract. Mech. 41, 233–266 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding by the MOHE (Ministry of Higher Education) Government of Malaysia through Research University Grant (RUG-GUP) UTM number Q. J130000. 7124. 00H14, under the title of Degradation of corrosion protective coatings on steel: computational and experimental approaches to blistering formation and development is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunan Prawoto.

Appendix: Weight Function in Linear Elastic Fracture Mechanics

Appendix: Weight Function in Linear Elastic Fracture Mechanics

In this section, the application of the weight function in fracture mechanics is briefly described for the sake of reader’s convenience. Further discussion is available elsewhere [57]. Bueckner and Rice [57, 5962] introduced the concept of the weight function (WF), which enables one to calculate the stress intensity factor (SIF) for certain loading system using a reference SIF for different loading systems. A WF exists for any crack problem specified by the geometry of the component and a crack type. If this function is known, then the SIF can be obtained by simply multiplying this function by the stress distribution and integrating it along the crack length.

Basic Relations: A crack of length a in a body may be loaded by tractions \( {\mathbf{T}}(s) = (T_{y} ,T_{x} )^{\text{T}} \)acting on acting normal to a curve Γ: see Fig. 4.

Fig. 4
figure 4

Crack loaded by body tractions

The tractions are responsible for a stress field at the crack tip, which can be characterized by a SIF KT, where the superscript T refers to the loading system. As Bueckner and Rice [57, 5962] have suggested, one can write

$$ K^{\text{T}} = \int\limits_{\Upgamma } {{\mathbf{T}} \cdot {\mathbf{m}}\,ds} , $$
(A1)

where m is the vector of the weight function, \( {\mathbf{m}} = (m_{y} ,m_{x} )^{\text{T}} \). Rice has shown that the weight function is related to the displacement field \( {\mathbf{u}} = (u_{y} ,u_{x} )^{\text{T}} \) under an arbitrary reference load [8] by

$$ {\mathbf{m}} = \frac{H}{{K_{\text{ref}} }}\frac{{\partial {\mathbf{u}}}}{\partial a}. $$
(A2)

where H is the generalized Young’s modulus, equal to E for plane stress and E/(1 − ν 2) for plane strain. K ref is the stress intensity factor for the chosen reference loading case. In most practical cases of Mode I loading, the stresses along the prospective crack line are of interest (see Fig. 5).

Fig. 5
figure 5

Stress along a virtual crack

Therefore, referring to Fig. 5, from the distribution of the stress perpendicular to the crack area in the uncracked component along the location of the crack, σ(x), the SIF for this stress distribution is given by

$$ K = \int\limits_{0}^{a} {\sigma (x) \cdot h(a,x)dx} , $$
(A3)

Therefore, the WF depends only on the m, which is essentially independent of the stress state and depends only on the geometry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prawoto, Y., Dillon, B. Failure Analysis and Life Assessment of Coating: The Use of Mixed Mode Stress Intensity Factors in Coating and Other Surface Engineering Life Assessment. J Fail. Anal. and Preven. 12, 190–197 (2012). https://doi.org/10.1007/s11668-011-9525-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-011-9525-1

Keywords

Navigation