Journal of Failure Analysis and Prevention

, Volume 11, Issue 5, pp 539–545 | Cite as

Soil Compaction Due to Tractor Traffic

Technical Article---Peer-Reviewed

Abstract

Horticulture in Mediterranean areas demand frequent tractor traffic for tillage and for the application of herbicides and pesticides, resulting in soil compaction. Soil compaction is one of the most important factors responsible for soil physical degradation. This compaction by agricultural machines can have adverse effects on crop production and the environment. Different methods have been proposed to estimate soil compaction intensity as a function of vehicle and soil properties such as the soil’s water content, bulk density, and resistance to penetration. In this work the authors studied subsoil compaction based on wheel load in the terrain tillage and tillage in a region that was not previously cultivated. A small tractor (engine power 25 kW, type E-TCVS, and weight 1200 kg) was used in the tests. Results showed that the first passage of wheel traffic of the tractor, increases the soil resistance more than the second passage; for example, there is a big difference between the penetration resistance at initial state (2.22 daN/cm2) and after the first passage (5.72 daN/cm2), while the variation between the penetration resistance after first passage (5.72 daN/cm2) and after second passage (6.22 daN/cm2) is relatively small. This shows that the first passage has the most significant impact on soil compaction.

Keywords

Bulk density Resistance to penetration Soil compaction Wheel traffic 

References

  1. 1.
    Vitlox, O., Loyen S.: Conséquences de la mécanisation sur la compaction du sol et l’infiltration de l’eau. Compte rendu de la journée d’étude: Erosion hydrique et coulées boueuses en Région Wallonne, pp. 45–58 (2002)Google Scholar
  2. 2.
    Pagliai, M., Marsili, A., Servadio, P., Vignozzi, N., Pellegrini, S.: Changes in some physical properties of a clay soil in central Italy following the passage of rubber tracked and wheeled tractors of medium power. Soil Tillage Res. 73, 119–129 (2003)CrossRefGoogle Scholar
  3. 3.
    Soane, B.D., Van Ouwerkerk, C.: Soil Compaction Problems in World Agriculture, pp. 1–22. Elsevier, Amsterdam (1994)Google Scholar
  4. 4.
    Abou-Zied, A., Kushwaha, R.L., Stilling, D.S.D.: Distributed Soil Displacement Associated with Surface Loading. Paper No. 031024. ASAE (2004)Google Scholar
  5. 5.
    Germain, N., Poussin, J.C.: Les exploitations de moyenne Côte d’Ivoire utilisant la motorisation intermédiaire. Cah. Sci. Hum. 23(3–4), 555–566 (1987)Google Scholar
  6. 6.
    FAO: Systèmes de production et pauvreté. Améliorer les moyens d’existence des agriculteurs dans un monde en changement. Moyen-Orient et Afrique du Nord (2001)Google Scholar
  7. 7.
    Bonnefond, P.: L’introduction de la motorisation en agriculture traditionnelle. Cah. ORSTOM, No. 4, pp. 21–33 (1970)Google Scholar
  8. 8.
    Håkansson, L., Voorhees, W.B., Riley, H.: Vehicle and wheel factors influencing soil compaction and crop response in different traffic regimes. Soil Tillage Res. 11, 239–282 (1988)CrossRefGoogle Scholar
  9. 9.
    Chehaibi, S., Hamza, E., Pieters, J., Verschoore, R.: Analyse comparative du tassement du sol occasionné par les passages de deux types de tracteurs. Annales de l’INRGREF, No. 8, pp. 157–170 (2006)Google Scholar
  10. 10.
    Chehaibi, S., M’kacher, I.: Effets des passages multiples du tracteur sur le tassement et la perméabilité du sol. Revue des régions arides, No. 21, pp. 875–880 (2008)Google Scholar
  11. 11.
    Raghavan, G.S.V., McKyes, E., Taylor, F.: Soil Compaction Effects on Soil Productivity. Department of Agricultural Engineering, Macdonald College of McGill University, St. Anne de Belleve (1979)Google Scholar
  12. 12.
    Botta, G.F., Tolon Becerra, A., Bellora Tourn, F.: Effect of the number of tractor passes on soil rut depth and compaction in two tillage regimes. Soil Tillage Res. 103, 381–386 (2009)CrossRefGoogle Scholar
  13. 13.
    Vitlox, O.: Répartition de la pression de contact des pneumatiques déterminée par la mesure de déformation du sol. Journée à thème conjointe de Pédologie et de Génie Rural, FUSAGx-Gembloux, pp. 65–69 (1998)Google Scholar
  14. 14.
    Billot, J.F., Aubineau, M., Autelet, R.: Les matériels de travail du sol semis et plantation. CEMAGREF/ITCF/TEC & DOC, Paris (1993)Google Scholar
  15. 15.
    Bengough, A.G., Campbell, D.J., O’Sullivan, M.F.: Penetrometer techniques in relation to soil compaction and root growth. In: Smith, K.A., Mullins, C.E. (eds.) Soil and Environmental Analysis. Physical Methods, 2nd edn, pp. 377–403. Marcel Dekker, New York (2001)Google Scholar
  16. 16.
    Lowery, B., Morrison, J.E.: Soil penetrometers and penetrability. In: Dane, J.H., Topp, G.C. (eds.) Methods of Soil Analysis, Part 4, Physical Methods, pp. 363–388. Soil Science Society of America, Madison (2002)Google Scholar
  17. 17.
    Herrick, J.E., Jones, T.L.: A dynamic cone penetrometer for measuring soil penetration resistance. Soil Sci. Soc. Am. J. 66, 1320–1324 (2002)CrossRefGoogle Scholar
  18. 18.
    Kai, C.: Vers une approche hydro-mécanique du comportement des sols cultives: experimentations et simulations. Thèse de doctorat à l’Institut des Sciences et industries du vivant et de l’environnement-Agro Paris Tech (2008)Google Scholar
  19. 19.
    Wells, L.G., Treesuwan, O.: The Response of Various Soil Strength Indices to Changing Water Content. ASAE Paper No. 77-1055. ASAE, St. Joseph (1977)Google Scholar
  20. 20.
    Miyoshi, H.: Effective layer for upland field from a view point of suitable soil condition for root development. Jpn. J. Soil Sci. Plant Nut. 43(3), 92–97 (1972)Google Scholar
  21. 21.
    Voorhees, W.B., Senst, C.G., Nelson, W.W.: Compaction and soil structure modification by wheel traffic in the northern Com Belt. Soil Sci. Soc. Am. J. 42(2), 344–349 (1978)CrossRefGoogle Scholar
  22. 22.
    Beutler, A.N., Centurion, J.F., Silva, A.P.: Soil resistance to penetration and least limiting water range for soybean yield in a hplustox from Brasil. Braz. Arch. Biol. Technol. 48, 863–871 (2005)CrossRefGoogle Scholar
  23. 23.
    Ahmad, N., Ul-Hassan, F., Quadir, G.: Effect of subsurface soil compaction and improvement measures on soil properties. Int. J. Agric. Biol. 9(3), 509–513 (2007)Google Scholar
  24. 24.
    Borghei, A.M., Taghinejad, J., Minaei, S., Karimi, M., Varnamkhasti, G.M.: Effect of subsoiling on soil bulk density, penetration, and cotton yield in northwest of Iran. Int. J. Agric. Biol. 10, 120–123 (2008)Google Scholar
  25. 25.
    Allen, R.R., Musick, J.T.: Furrow irrigation infiltration with multiple traffic and increased axle mass. Am. Soc. Agric. Eng. 13(1), 49–53 (1997)CrossRefGoogle Scholar
  26. 26.
    Saffih-Hadadi, K., Défossez, P., Richard, G., Cui, Y.-J., Tang, A.-M., Chaplain, V.: A method for predicting soil susceptibility to the compaction of surface layers as a function of water content and bulk density. Soil Tillage Res. 105, 96–103 (2009)CrossRefGoogle Scholar
  27. 27.
    Deffossez, P., Richard, G., Boizard, H., O’Sullivan, M.F.: Modeling change in soil compaction due to agricultural traffic as function of soil water content. Geoderma 116, 89–105 (2003)CrossRefGoogle Scholar
  28. 28.
    Hamza, M.A., Anderson, W.K.: Soil compaction in cropping systems a review of the nature, causes and possible solutions. Soil Tillage Res. 82, 121–145 (2005)CrossRefGoogle Scholar
  29. 29.
    Keller, T., Håkansson, I.: Estimation of reference bulk density from soil particle size distribution and soil organic matter content. Geoderma 154, 398–406 (2010)CrossRefGoogle Scholar

Copyright information

© ASM International 2011

Authors and Affiliations

  1. 1.Higher Institute of AgronomySousseTunisia

Personalised recommendations