Skip to main content
Log in

Failure Analysis of Failed Wire Rope

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

Failure of an old rope from a stringing lattice transmission towers occurred in winter while the rope was being removed to make way for a new rope. Fracture took place around mid-span. At that time, ambient temperature was −22 °C. Wire rope was in service for nearly 50 years. We were given the mandate to determine the reasons for the fracture of the wire rope and also to suggest measures to prevent such failures from occurring. The study involved laboratory testing (mechanical and metallographic) of representative wire rope samples. The effect of low temperature (from room temperature to −40 °C) on the tensile behavior of wires and wire rope samples was evaluated. In addition, we designed an instrumented impact test to assess the effect of notches, low temperatures and dynamic loading on the fracture behavior; however, no standards were available for direct comparison. Optical metallography was used to judge the extent of corrosion and the nature of microstructure and the cleanliness of the steel. The fracture morphology of broken tensile and impact specimens was carried out using scanning electron microscopy to establish relations between test parameters and fracture modes. Results indicate that considerations have to be given to the occurrence of corrosion, notches, low temperatures, and dynamic loading conditions when replacing wire ropes and this may necessitate the replacement of wire rope earlier than the time dictated by the criterion of 10% loss in breaking strength. Results also indicate that impact testing is a better evaluator of the susceptibility of wire ropes to brittle fracture than tensile tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Singh, M.K., Mahto, A., Thakur, R.N., Sinha, A.: Failure analysis of wire rope used for hoisting in mining: a case study. J. Fail. Anal. Preven. 7, 87–92 (2007)

    Article  Google Scholar 

  2. Verret, R., Ridge, I.: Wire Rope Forensics—CASAR Special Wire Ropes, 1st edn., 47 p. PR GmbH, Aachen, Germany (2005)

  3. Server, W.L., Ireland, D.R.: Nonstandard test techniques utilizing instrumented Charpy and Izod tests. In: Desisto, T.S. (ed.) Instrumented Impact Testing, ASTM STP 563, pp. 74–91. ASTM, Philadelphia, PA (1973)

    Google Scholar 

  4. Miller, B.A.: Failure analysis of wire rope. Adv. Mater. Process. 157, 43–46 (2000)

    Google Scholar 

  5. Dieter, G.F.: Mechanical Metallurgy, 3rd edn., pp. 471–500. McGraw-Hill, Boston (1986)

    Google Scholar 

  6. Boyer, H.E., Call, T.L. (eds.) Metals Handbook, Desk edition, pp. 1.60–1.61. ASM, Metals Park, OH (1985)

  7. Krishnadev, M.R., et al.: An evaluation of the effect of low temperature on the mechanical properties of a commercial steel to be used in the Artic. J. Test. Eval., ASTM 8, 42–47 (1980)

    CAS  Google Scholar 

  8. Hertzberg, R.W.: Deformation and Fracture Mechanics of Engineering Materials, 4th edn., p. 64. John Wiley, New York (1995)

    Google Scholar 

  9. van Zyl, M.: Discard criterion for mine winder ropes. Final report, Sept 2000 from Research Agency, Mike Van Zyl Inc., Project no. GAP 502, South Africa. Available from Internet: www.simrac.co.za/reporrt/Reorts/thrust5/gap502/gap502.htm

  10. Verret, R., Lindsey, W.: Wire Rope Inspection and Examination, 31 p. CASAR, PR GmbH, Aachen, Germany (1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhavarao Krishnadev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnadev, M., Larouche, M., Lakshmanan, V.I. et al. Failure Analysis of Failed Wire Rope. J Fail. Anal. and Preven. 10, 341–348 (2010). https://doi.org/10.1007/s11668-010-9367-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-010-9367-2

Keywords

Navigation