Journal of Failure Analysis and Prevention

, Volume 9, Issue 2, pp 107–113 | Cite as

Failure Analysis of Mill Shaft Roll

  • A. Babakr
  • R. Bradley
  • A. Al-Ahmari
Case History---Peer-Reviewed


A strip mill roll shaft failure was investigated. The investigation revealed that the fatigue strength of the shaft had been compromised by a combination of several factors that included: inadequate fillet radius size, the use of dissimilar filler materials to rebuild the shaft surface, the presence of slag inclusions at the weld/alloy interface, and machining defects on the shaft surface. Such failures have occurred repeatedly, and this paper presents a case study investigating the cause of the problem and discusses possible remedial measures to prevent similar occurrences.


Cyclic loads Filler Fracture Inclusions Reclamation Rotational bending fatigue Shaft Slag Stress risers Weld Weld porosity 


  1. 1.
    Nguyen, T., Romios, M., Es-Sai, O.S.: Failure of a conveyor trunnion shaft on a centrifuge. Eng. Fail. Anal. 11(3), 401 (2004)CrossRefGoogle Scholar
  2. 2.
    Tawfik, D., Kirstein, O., Mutton, P.J., Chiu, W.K.: Verification of residual stresses in flash-butt-weld rails using neutron diffraction. Physica B: Phys. Condens. Matter 385(Part 2), 894 (2006)CrossRefADSGoogle Scholar
  3. 3.
    Pantazopoulos, G., Sampani, A.: Analysis of a weld failure of a rolled Zn-alloy strip—a case study. Eng. Fail. Anal. 14(4), 642 (2007)CrossRefGoogle Scholar
  4. 4.
    Sissom, L.E., Scardina, J.T.: Fatigue weld failure causes explosion of air receiver. Eng. Fract. Mech. 17(5), 405 (1983)CrossRefGoogle Scholar
  5. 5.
    Mansouri, H., Monshi, A., Hadavinia, H.: Effect of local induction heat treatment on the induced residual stresses in the web region of a welded rail. J. Strain Anal. Eng. Des. 39(3), 271 (2004)CrossRefGoogle Scholar
  6. 6.
    El-Batahgy, A., Zaghloul, B.: Fatigue failure of an offshore condensate recycle line in a natural gas production field. Mater. Charact. 54(3), 246 (2005)Google Scholar
  7. 7.
    Sharp, W.B.A.: An Overview of Stress-assisted Corrosion in the Pulp and Paper Industry, Paper 4513, Corrosion 2004. NACE International, Charleston, SC (2004)Google Scholar
  8. 8.
    Pilkey, W.D.: Peterson’s Stress Concentration Factors, 2nd edn. Wiley, New York (1997)Google Scholar
  9. 9.
    Li, L., Messler, R.W. Jr.: Segregation of phosphorus and sulfur in heat-affected zone hot cracking of type 308 stainless steel. Weld. J. 81(5), 78 (2002)Google Scholar
  10. 10.
    Li, L., Messler, R.W. Jr.: The effect of phosphorus and sulfur on susceptibility to weld hot cracking in austenitic stainless steels. Weld. J. 78(12), 387 (1999)Google Scholar
  11. 11.
    Shankar, V., Gill, T.P.S., Mannan, S.L., Sundaresan, S.: Solidification cracking in austenitic stainless steel welds. Sadhana 28(Parts 3 and 4), 359 (2003)CrossRefGoogle Scholar
  12. 12.
    Kou, S.: Solidification and liquation cracking issues in welding. JOM 55(6), 37 (2003)CrossRefGoogle Scholar
  13. 13.
    Thomas, R.D. Jr., Messler, R. Jr.: Welding type 347 stainless steel: an interpretive report, Bulletin No. 421, Welding Research Council, p. 127 (1997)Google Scholar
  14. 14.
    Lundin, C.D., Qiao, C.Y.P., Lee, C.H., Batten, G.W.: Weldability and hot ductility behavior of nuclear grade austenitic stainless steels, Bulletin 509, Welding Research Council (2006)Google Scholar

Copyright information

© ASM International 2009

Authors and Affiliations

  1. 1.SABIC Technology CenterJubail Industrial CitySaudi Arabia

Personalised recommendations