Journal of Failure Analysis and Prevention

, Volume 9, Issue 2, pp 147–158 | Cite as

Application of Numerical Method to Investigation of Fatigue Crack Behavior Through Friction Stir Welding

Technical Article---Peer-Reviewed

Abstract

Fatigue crack propagation through a friction stir welded (FSW) joint of 2024-T351 Al alloy is investigated numerically. The governing relationships for predicting the crack behavior including incremental crack length, crack growth rate, and crack growth direction are presented. Stress intensity is calculated based on displacement correlation technique, and fatigue crack growth through the FSW joint is investigated under linear elastic fracture mechanics (LEFM) using the Paris model. The concepts of crack closure, residual stress, and stress relaxation are incorporated into the Paris model to support the final results. Maximum circumferential tensile stress method is applied to predict the crack growth direction. Finally, the numerical approaches are employed to the high number of elements in the framework of Fracture Analysis Code (FRANC2D/L) to simulate the fatigue crack propagation through the FSW joint including various zones with different material properties. Fatigue lifetime of the welded joint is predicted by implementing the same procedure for various loading values. The obtained numerical results are validated with the experimental work (Ali et al., Int J Fatigue 30:2030–2043, 2008).

Keywords

Fatigue crack growth Finite element method Friction stir welding Numerical analysis Simulation 

List of symbols

a

Half of the internal crack length

da/dN

Crack growth rate

C

Constant in Paris model

E

Modulus of elasticity (Young’s modulus)

H

Strain hardening modulus

KI

Stress intensity factor for opening mode (mode I)

Kmax

Maximum stress intensity factor

m

Exponent in Paris model

n

Strain hardening exponent

rf

Plastic zone size

R

Stress ratio

α

Constant

Δα

Incremental crack length

ΔK

Stress intensity factor range

Δσ

Stress range

Δσeff

Effective stress range

ν

Poisson’s ratio

σ0

Yield strength

σmax

Maximum applied stress

σmin

Minimum applied stress

σop

Crack-opening stress

σres

Residual stress

Notes

Acknowledgment

The authors would like to thank the University Putra Malaysia (UPM) for awarding fellowship to one of the authors (A. F. Golestaneh) and for supporting this research.

References

  1. 1.
    Ali, A., Brown, M.W., Rodopoulos, C.A., Gardiner, S.: Characterization of 2024-T351 friction stir welding joints. J. Fail. Anal. Prev. 6(4), 41–53 (2006)Google Scholar
  2. 2.
    Fratinia, L., Zuccarellob, B.: An analysis of through-thickness residual stresses in aluminum FSW butt joints. Int. J. Mach. Tool Manuf. 46, 611–619 (2006)CrossRefGoogle Scholar
  3. 3.
    Scialpi, A., de Filippis, L.A.C., Cavaliere, P.: Influence of shoulder geometry on microstructure and mechanical properties of friction stir welded 6082 aluminium alloy. Mater. Des. 28, 1124–1129 (2007)Google Scholar
  4. 4.
    Bussu, G., Irving, P.E.: The role of residual stress and heat affected zone properties on fatigue crack propagation in friction stir welded 2024-T351 aluminium joints. Int. J. Fatigue 25, 77–88 (2003)CrossRefGoogle Scholar
  5. 5.
    Lomolinoa, S., Tovob, R., Dos Santos, J.: On the fatigue behaviour and design curves of friction stir butt-welded Al alloys. Int. J. Fatigue 27, 305–316 (2005)CrossRefGoogle Scholar
  6. 6.
    Lombard, H., Hattingh, D.G., Steuwer, A., James, M.N.: Optimising FSW process parameters to minimise defects and maximise fatigue life in 5083-H321 aluminium alloy. Eng. Fract. Mech. 75, 341–354 (2008)CrossRefGoogle Scholar
  7. 7.
    Ali, A., An, X., Rodopoulous, C.A., Brown, M.W., O’Hara, P., Levers, A., Gardiner, S.: The effect of controlled shot peening on the fatigue behavior of 2024-T3 aluminum friction stir welds. Int. J. Fatigue 29, 1531–1545 (2007)CrossRefGoogle Scholar
  8. 8.
    Ceschini, L., Boromei, I., Minak, G., Morri, A., Tarterini, F.: Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005/10 vol.%Al2O3 p composite. Compos. Sci. Technol. 67, 605–615 (2007)CrossRefGoogle Scholar
  9. 9.
    Alegre, J.M., Gutierrez-Solana, F., Aragon, A.: A finite element simulation methodology of the fatigue behavior of punched and drilled plate components. Eng. Fail. Anal. 11, 737–750 (2004)CrossRefGoogle Scholar
  10. 10.
    Ali, A., Brown, M.W., Rodopoulous, C.A.: Modeling of crack coalescence in 2024-T351 Al alloy friction stir welded joints. Int. J. Fatigue 30, 2030–2043 (2008)CrossRefGoogle Scholar
  11. 11.
    Ingraffea, A.R., Blandford, G., Liggett, J.A.: Automatic modeling of mixed-mode fatigue and quasi-static crack propagation using the boundary element method. In: Fourteenth National Symposium on Fracture, ASTM STP (1987).Google Scholar
  12. 12.
    Cosenza, C., Fratini, L., Pasta, A., Micari, F.: Damage and fracture study of cold extrusion dies. Eng. Fract. Mech. 71, 1021–1033 (2004)CrossRefGoogle Scholar
  13. 13.
    Barlow, K.W., Chandra, R.: Fatigue crack propagation simulation in an aircraft engine fan blade attachment. Int. J. Fatigue 27, 1661–1668 (2005)CrossRefGoogle Scholar
  14. 14.
    Xiang, Z., Lie, S.T., Wang, B., Cen, Z.: A simulation of fatigue crack propagation in a welded T-joint using 3D boundary element method. Int. J. Press. Ves. Pip. 80, 111–120 (2003)CrossRefGoogle Scholar
  15. 15.
    Glodez, S., Sraml, M., Kramberger, J.: A computational model for determination of service life of gears. Int. J. Fatigue 24, 1013–1020 (2002)MATHCrossRefGoogle Scholar
  16. 16.
    Anderson, T.L.: Fracture Mechanics, Fundamentals and Applications, 2nd edn, p. 704. CRC Press, Boca Raton (1994)Google Scholar
  17. 17.
    Wawrzynek, P., Ingraffea, A.: FRANC2D: A Two Dimensional Crack Propagation Simulator, p. 74. Cornell University, Ithaca (1993)Google Scholar
  18. 18.
    Wawrzynek, P., Martha, L.: CASCA: A Simple 2-D Mesh Generator, p. 30. Cornell University, Ithaca (1997)Google Scholar
  19. 19.
    Bittencourt, T.N., Wawrzynek, P.A., Ingraffea, A.R., Sousa, J.L.: Quasi-automatic simulation of crack propagation for 2D LEFM problems. Eng. Fract. Mech. 55, 321–334 (1996)CrossRefGoogle Scholar
  20. 20.
    Rogers, C.A., Hancock, G.J.: Fracture toughness of G550 sheet steels subjected to tension. J. Constr. Steel Res. 57, 71–89 (2001)CrossRefGoogle Scholar
  21. 21.
    Ural, A., Heber, G., Wawrzynek, P.A., Ingraffea, A.R., Lewicki, D.G., Neto, J.B.C.: Three-dimensional parallel finite element simulation of fatigue crack growth in a spiral bevel pinion gear. Eng. Fract. Mech. 72, 1148–1170 (2005)CrossRefGoogle Scholar
  22. 22.
    Xiao, X., Yan, X.: A new numerical analysis for a semi-circular surface crack. Eng. Fract. Mech. 74(16), 2639–2641 (2007)CrossRefGoogle Scholar
  23. 23.
    Yan, X.: Automated simulation of fatigue crack propagation for two-dimensional linear elastic fracture mechanics problems by boundary element method. Eng. Fract. Mech. 74(16), 2639–2641 (2007)CrossRefGoogle Scholar
  24. 24.
    Fulland, M., Sander, M., Kullmer, G., Richard, H.A.: Analysis of fatigue crack propagation in the frame of a hydraulic press. Eng. Fract. Mech. 75, 892–900 (2008)CrossRefGoogle Scholar
  25. 25.
    Llopart, L., Kurz, B., Wellhausen, C., Anglada, M., Drechsler, K., Wolf, K.: Investigation of fatigue crack growth and crack turning on integral stiffened structures under mode I loading. Eng. Fract. Mech. 73, 2139–2152 (2006)CrossRefGoogle Scholar
  26. 26.
    Simandjuntak, S., Alizadeh, H., Smith, D.J., Pavier, M.J.: Three dimensional finite element prediction of crack closure and fatigue crack growth rate for a corner crack. Int. J. Fatigue 28, 335–345 (2006)CrossRefGoogle Scholar
  27. 27.
    Bae Park, H., Whi Lee, B.: Effect of specimen thickness on fatigue crack growth rate. Nucl. Eng. Des. 197, 197–203 (2000)CrossRefGoogle Scholar
  28. 28.
    Skelton, R.P., Vilhelmsent, T., Webster, G.A.: Energy criteria and cumulative damage during fatigue crack growth. Int. J. Fatigue 20, 641–649 (1998)CrossRefGoogle Scholar
  29. 29.
    Glodez, S., Ren, Z.: Modelling of crack growth under cyclic contact loading. Theor. Appl. Fract. Mech. 30, 159–173 (1998)CrossRefGoogle Scholar
  30. 30.
    Zhang, X., Chan, A.S.L., Davies, G.A.O.: Numerical simulation of fatigue crack growth under complex loading sequences. Eng. Fract. Mech. 42, 305–321 (1992)CrossRefADSGoogle Scholar
  31. 31.
    Sekine, H., Yan, B., Yasuho, T.: Numerical simulation study of fatigue crack growth behavior of cracked aluminum panels repaired with a FRP composite patch using combined BEM/FEM. Eng. Fract. Mech. 72, 2549–2563 (2005)CrossRefGoogle Scholar
  32. 32.
    Alizadeh, H., Simandjutak, S., Smith, D., Pavier, M.: Prediction of fatigue crack growth rates using crack closure finite element analysis. Int. J. Fatigue 29, 1711–1715 (2007)MATHCrossRefGoogle Scholar
  33. 33.
    Huang, J., Rapoff, A.J., Haftka, R.T.: Attracting cracks for arrestment in bone-like composites. Mater. Des. 27, 461–469 (2006)MATHGoogle Scholar
  34. 34.
    Alizadeh, H., Hills, D.A., de Matos, P.F.P., Nowell, D., Pavier, M.J., Paynter, R.J., Smith, D.J., Simandjutak, S.: A comparison of two and three-dimensional analyses of fatigue crack closure. Int. J. Fatigue 29, 222–231 (2007)CrossRefGoogle Scholar
  35. 35.
    Wang, H., Buchholz, F.G., Richard, H.A., Jagg, S., Scholtes, B.: Numerical and experimental analysis of residual stresses for fatigue crack growth. Compos. Mater. Sci. 16, 104–112 (1999)CrossRefGoogle Scholar
  36. 36.
    Dougherty, J.D., Padovan, J., Srivatsan, T.S.: Fatigue crack propagation and closure behavior of modified 1071 steel: finite element study. Eng. Fract. Mech. 56, 189–212 (1997)Google Scholar
  37. 37.
    Hanson, J.: Cohesive FRANC2D Tutorial, p. 14. Cornell University, Ithaca (1999)Google Scholar
  38. 38.
    Iesulauro, E.: FRANC2D/L: A Crack Propagation Simulator for Plane Layered Structures, p. 123. Cornell University, Ithaca Google Scholar
  39. 39.
    Porto, I., de Matos, P.F.P.: Crack Growth Problem in Riveted Lap-Joint Panel, p. 23. University of Porto, Porto (2004)Google Scholar
  40. 40.
    Ali, A.: Improving the fatigue life of aircraft components by using surface engineering, p. 238. Ph.D. Thesis in Mechanical Engineering, The University of Sheffield (2005)Google Scholar
  41. 41.
    Cavalierea, P., Nobilea, R., Panellaa, F.W., Squillaceb, A.: Mechanical and microstructural behavior of 2024-7075 aluminum alloy sheets joined by friction stir welding. Int. J. Mach. Tool Manuf. 46, 588–594 (2006)CrossRefGoogle Scholar
  42. 42.
    Fersini, D., Parondi, A.: Fatigue behavior of Al 2024-T3 friction stir welded lap joint. Eng. Fract. Mech. 74, 468–480 (2007)CrossRefGoogle Scholar
  43. 43.
    Richard, H.A.: Simulation of Fatigue Crack Growth in Real Structures, pp 47–49. University Paderborn, Paderborn Google Scholar
  44. 44.
    Simandjutak, S., Alizadeh, H., Smith, D.J., Pavier, M.J.: Three dimensional finite element prediction of crack closure and fatigue crack growth rate for a corner crack. Int. J. Fatigue 28, 335–345 (2006)CrossRefGoogle Scholar

Copyright information

© ASM International 2009

Authors and Affiliations

  1. 1.Department of Mechanical and Manufacturing Engineering, Faculty of EngineeringUniversity Putra MalaysiaSerdangMalaysia

Personalised recommendations