Advertisement

Journal of Failure Analysis and Prevention

, Volume 9, Issue 1, pp 16–22 | Cite as

Failure Investigation of a Furnace Tube Support

  • A. M. Babakr
  • A. Al-Ahmrai
  • K. Al-Jumayiah
  • F. Habiby
Case History---Peer-Reviewed

Abstract

A furnace tube support failed after 6 months service at 850 °C. The support was an HK alloy, a member of the heat-resistant cast alloy family (H-Series) steels. The H-series steels are widely used in the petrochemical industry for components requiring enhanced high-temperature properties. Microstructural changes occurring at high temperature clearly affect the mechanical properties. The property degradation in HK-40 steel furnace tube support subjected to high temperature was caused by the formation of sigma phase. The investigation included metallurgical analysis, materials characterization, and mechanical analysis.

Keywords

Sigma phase Corrosion Microstructure Heat-resistant steels Hardness 

References

  1. 1.
    Failure Analysis and Prevention, vol. 11. ASM Handbook, ASM International, Materials Park, OH (1996)Google Scholar
  2. 2.
    Colangelo, V.J., Heiser, F.A.: Analysis of Metallurgical Failures, 2nd edn., Wiley, New York (1987)Google Scholar
  3. 3.
    El-Batahgy, A., Zaghloul, B.: Creep failure of cracking heater at a petrochemical plant. Mater. Charact. 54(3), 239–245 (2005)Google Scholar
  4. 4.
    Kumar, R.A., Sinha, S.K., Tiwari, Y.N., Swaminathan, J., Das, G., Chaudhuri S.: Analysis of failed reformer tubes. Eng. Fail. Anal. 10, 351–358 (2003)CrossRefGoogle Scholar
  5. 5.
    Ashby, M.F.: Deformation-mechanism, maps. Acta Metall. 20, 887–897 (1972)CrossRefGoogle Scholar
  6. 6.
    Dyson, B.: Use of CDM in materials modeling and component creep life prediction. J. Pressure Vessel Technol. 122, 281–296 (2000)CrossRefGoogle Scholar
  7. 7.
    Ejaz, N., Tauqir, A.: Failure due to structural degradation in turbine blades. Eng. Fail. Anal. 13(3), 452–463 (2006)CrossRefGoogle Scholar
  8. 8.
    Barbosa, C., Nascimento, J.L., Caminha, I.M.V., Abud, I.C.: Microstructural aspects of the failure analysis of nickel base superalloys components. Eng. Fail. Anal. 12(3), 348–361 (2005)CrossRefGoogle Scholar
  9. 9.
    Pang, H.T., Reed, P.A.S.k.: Microstructure effects on high temperature fatigue crack initiation and short crack growth in turbine disc nickel-base superalloy Udimet 720Li. Mater. Sci. Eng. A 448(1–2), 67–79 (2007)Google Scholar
  10. 10.
    Coreño-Alonso, O., Duffus-Scott, A., Zánchez-Cornejo, C., Coreño-Alonso, J., de Jesús, F.S., Bolarín-Miró, A.: On the effect of σ-phase formation during metal dusting. Mater. Chem. Phys. 84(1), 20–28 (2004)Google Scholar
  11. 11.
    Kobayashi, K., Yamaguchi, K., Hayakawa, M., Kimura, M.: Grain size effect on high-temperature fatigue properties of alloy718. Mater. Lett. 59(2–3), 383–386 (2005)Google Scholar
  12. 12.
    Bulloch, J.H., Bernard, P.J.: A remaining life assessment of a cracked attemperator steam line. Eng. Fail. Anal. 8(6), 529–540 (2001)CrossRefGoogle Scholar
  13. 13.
    Shang, D.G., Sun, G.Q., Yan, C.L., Chen, J.H., Cai, N.: Creep-fatigue life prediction under fully-reversed multiaxial loading at high temperatures. Int. J. Fat. 29(4), 705–712 (2007)CrossRefGoogle Scholar
  14. 14.
    Inoue, T., Okazaki, M., Igari, T., Sakane, M., Kishi, S.: Evaluation of fatigue-creep life prediction methods in multiaxial stress state. Nucl. Eng. Des. 126, 13–21 (1991)CrossRefGoogle Scholar
  15. 15.
    Ogata, T., Yaguchi, M.: Damage mechanism in weldment of 2.25Cr–1Mo steel under creep-fatigue loading. Eng. Fract. Mech. 74(6), 947–955 (2007)CrossRefGoogle Scholar
  16. 16.
    Elmer, J.W., Palmer, T.A., Specht, E.D.: In situ observations of sigma phase dissolution in 2205 duplex stainless steel using synchrotron X-ray diffraction. Mater. Sci. Eng. A 459, 151–155 (2007)CrossRefGoogle Scholar
  17. 17.
    Kington, A.V., Noble, F.W.: σ phase embrittlement of a type 310 stainless steel. Mater. Sci. Eng. A 138(2), 259–266 (1991)CrossRefGoogle Scholar
  18. 18.
    Barcik, J.: The kinetics of σ-phase precipitation in AISI310 and AISI316 steels. Metall. Mater. Trans. A 14(3), 635–641 (1983)CrossRefGoogle Scholar
  19. 19.
    Solomon, H.D., Devine, T.M.: In: Lula, R.D. (ed.) Duplex Stainless Steels, pp. 693–756. American Society for Metals, Metals Park, OH (1983).Google Scholar
  20. 20.
    Sedriks, J.: Corrosion of Stainless Steels, 2nd edn., p. 22. John Wiley & Sons, New York (1996)Google Scholar
  21. 21.
    Jahromi, S.A.J., Javadpour, S., Gheisari, Kh.: Failure analysis of welded joints in a power plant exhaust flue. Eng. Fail. Anal. 13(4), 527–536 (2006)CrossRefGoogle Scholar
  22. 22.
    Honeycombe, R.W.K.: Steels: Microstructure and Properties, 2nd edn. Arnold, London (1995)Google Scholar
  23. 23.
    Brett, S.J.: In-service cracking mechanism affecting 2CrMo welds in 1/2CrMoV steam pipework systems, Proc. International Conference on Integrity of High-Temperature Welds, IOM, pp. 3–14 (1998).Google Scholar
  24. 24.
    Peckner, D., Bernstein, I.M.: Handbook of Stainless Steels. McGraw-Hill (1977).Google Scholar
  25. 25.
    Lamb, S., Bringas, J.E. eds.: Practical Handbook of Stainless Steels and Nickel Alloys. ASM International, Materials Park, OH (1999)Google Scholar
  26. 26.
    Blair, M.C.: Cast Stainless Steels, Metals Handbook, vol. 1, p. 908. ASM International, Materials Park, OH (1990)Google Scholar
  27. 27.
    Zhu, S.J., Wang, Y., Wang, F.G.: Comparison of the creep crack growth resistance of HK40 and HP40 heat-resistant steels. J. Mater. Sci. Lett. 9(5), 520–521 (1990)CrossRefGoogle Scholar
  28. 28.
    Pankiw, R.I., Voke, D.P., Muralidharan, G., Evans, N.D., Stevens, C.O., Liu, K.C., Santella, M.L., Maziasz, P.J., and Sikka, V.K.: Precipitation and its effect on the design of cast heat resistant alloys, Corrosion/2007, paper 7424Google Scholar
  29. 29.
    Authors’ personal investigative experiencesGoogle Scholar
  30. 30.
    Ezuber, H.M., El-Houd, A., El-Shawesh, F.: Effects of sigma phase precipitation on seawater pitting of duplex stainless steel. Desalination 207, 268–275 (2007)CrossRefGoogle Scholar
  31. 31.
    Lopez, N., Cid, N., Puiggali, M.: Influence of σ-phase on mechanical properties and corrosion resistance of duplex stainless steels. Corrosion Science 41(8), 1615–1631 (1999).Google Scholar
  32. 32.
    Johnson, E., Kim, Y.J., Chumbley, L.S., Gleeson, B.: Initial phase transformation diagram determination for the CD3MN cast duplex stainless steel. Scr. Mater. 50(10), 1351–1354 (2004)CrossRefGoogle Scholar
  33. 33.
    Wilms, M.E., Gadgil, V.J., Krougman, J.M., Kolster, B.H.: Effect of σ-phase precipitation at 800 °C on the mechanical properties of a high alloyed duplex stainless steel. Mater. High Temp. 9(3), 160–166 (1991)Google Scholar
  34. 34.
    Patankar, S.N., Tan, M.J.: Sigma phase precipitation during superplastic forming of duplex stainless steel. Mater. High Temp. 19(1), 41–44 (2002)Google Scholar
  35. 35.
    Blair, M.C.: Cast Stainless Steels, Metals Handbook, vol. 1, p. 908. ASM International, Materials Park, OH (1990)Google Scholar
  36. 36.
    Hansen, D.A., Puyear, R.B.: Materials Selection for Hydrocarbon and Chemical Plants. Marcel Dekker (1996)Google Scholar
  37. 37.
    Hau, J., Seijas, A.: Sigma phase embrittlement of stainless steel in FCC service, Corrosion/2006, paper 06578Google Scholar
  38. 38.
    Corrosion, vol. 13, p. 11. Metals Handbook, ASM International, Metals Park, OH (1987)Google Scholar
  39. 39.
    Li, J., Wu, T., Riquier, Y.: Sigma phase precipitation and its effect on the mechanical properties of a super duplex stainless steel. Mater. Sci. Eng. A174, 149–156 (1994)Google Scholar
  40. 40.
    Tiong, D.K-K, Walsh, J., McHaney, J.H.: Technical challenges in using super duplex stainless steel. Corrosion/2006, paper 6147Google Scholar
  41. 41.
    Vander Voort, G.F.: Properties and Selection: Iron Steels and High-Performance Alloys, vol. 1, 10th edn., p. 709. Metals Handbook, ASM International, Materials Park, OH (2001)Google Scholar
  42. 42.
    Kobayashi, D.Y., Wolynec, S.: Evaluation of the low corrosion resistant phase formed during the sigma phase precipitation in duplex-stainless steels. Mater. Res. 2(4), 239–247 (1999)Google Scholar
  43. 43.
    Natesan, K.: Materials performance in coal fluidized bed combustion environment. Tenth International Pittsburgh Coal Conference, Pittsburgh, PA, 20–24 Sept 1993Google Scholar
  44. 44.
    Sedriks, A.J.: Corrosion of Stainless Steels, 2nd edn. John Wiley & Sons (1996)Google Scholar
  45. 45.
    Zucato, I., Moreira, M.C., Machado, I.F., Lebrao, S.M.: Microstructural characterization and the effect of phase transformations on toughness of the UNS S31803 duplex stainless steel aged treated at 850 °C. Mater. Res. 5(3), 385–389 (2002)Google Scholar
  46. 46.
    Steel Castings Handbook Supplement 9 High Alloy Data Sheets Heat Series Steel Founders’ Society of America (2004)Google Scholar
  47. 47.
    Dove, D., Messer, B., Phillips, T.: An austenitic stainless steel, resistant to high temperature creep and naphthenic acids attack in refinery environments. Corrosion/2001, paper 01523Google Scholar
  48. 48.
    Nicolio, C.J., Holmquist, M.: Duplex alloys; challenging corrosion in the new millennium. Corrosion/2002, paper 02120Google Scholar
  49. 49.
    Tang, Y.J., Wang, Q.M., Yuan, F.H., Gong, J., Sun, C.: High-temperature oxidation behavior of arc ion plated NiCoCrAlYSiB coatings on cobalt-based super alloy. J. Mater. Res. 21(3), 737 (2006)CrossRefADSGoogle Scholar

Copyright information

© ASM International 2008

Authors and Affiliations

  • A. M. Babakr
    • 1
  • A. Al-Ahmrai
    • 1
  • K. Al-Jumayiah
    • 1
  • F. Habiby
    • 1
  1. 1.Saudi Basic Industries Corporation (SABIC)SABIC Technology Center-JubailAl-JubailSaudi Arabia

Personalised recommendations