Advertisement

Journal of Failure Analysis and Prevention

, Volume 8, Issue 6, pp 557–563 | Cite as

Electrochemical Formation of a Failure Preventing Film on Nickel Surface in Borate Solutions

  • E. E. Abd El Aal
  • S. M. Abd El Haleem
Technical Article---Peer-Reviewed

Abstract

Cyclic voltammograms (CVs) of the Ni electrode are traced in Na2B4O7 solutions as a function of electrolyte concentration, voltage scanning range, and rate in order to determine the nature of failure protective species formed in the slightly alkaline media. The species formed on the Ni electrode are found to depend on the sweep number due to changes in the activation state of the electrode surface. The voltammograms are characterized by a pronounced anodic peak due to the formation of NiO and a protective passive film corresponding to the formation of β-Ni(OH)2 before the evolution of oxygen. An additional anodic peak in the vicinity of oxygen evolution potential appeared in the advanced cycles that is attributed to the transformation of β-Ni(OH)2 to β-NiOOH. The cathodic branch shows only one peak corresponding to the reduction of β-NiOOH to β-Ni(OH)2. The current density flowing along the anodic oxidation peak varies with the concentration of the electrolyte according to: \( \log\,i_{\text{p}} = a + b\log\,C_{{{{\text{B}}_{4} {\text{O}}_{7}^{}}^{2 - } }} \) where a and b are constants. An increase in the scan rate increases markedly the current density flowing along the whole range of the CVs. As the concentration of borate anions increases, the anodic peak potential is shifted toward more positive values, whereas the cathodic peak potential is shifted in the negative direction, indicating the irreversibility of formation of the passive film formed on the electrode surface. A correlation is made between the anodic oxidation processes and their corresponding cathodic one. The failure-protecting film in borate solutions is assumed to be caused by the formation of a sandwich oxide having the form: NiO/β-Ni(OH)2/β-NiOOH.

Keywords

Failure preventing film Cyclic voltammetry Nickel Behavior Sodium borate Passivation Nickel oxides 

References

  1. 1.
    Frankenthal, R.P., Kruger, J.: Passivity of Metals, p. 802. The Electrochemical Society, Princeton (1978)Google Scholar
  2. 2.
    Sato, N., Kudo, K.: An ellipsometric study of anodic passivation of nickel in borate buffer solution. Electrochim. Acta 19, 461–470 (1974)CrossRefGoogle Scholar
  3. 3.
    MacDougall, B., Cohen, M.: Anodic oxide films on nickel in acid solutions. J. Electrochem. Soc. 123, 191–197 (1976)CrossRefGoogle Scholar
  4. 4.
    Ord, J.L., Clayton, J.C., DeSmet, D.J.: An ellipsometric study of the anodic oxidation of nickel in neutral electrolyte. J. Electrochem. Soc. 124, 1714–1719 (1977)CrossRefGoogle Scholar
  5. 5.
    Nishimura, R.: Pitting corrosion of nickel in borate and phosphate solutions. Corrosion 43, 486–492 (1987)Google Scholar
  6. 6.
    D’Alkaine, C.V., Santanna, M.A.: The passivating films on nickel in alkaline solutions I. General aspects of the Ni (II) region. J. Electroanal. Chem. 457, 5–12 (1998)CrossRefGoogle Scholar
  7. 7.
    Kikuchi, N., Seo, M.: In situ gravimetry of nickel thin film during potentiodynamic polarization in acidic and alkaline sulfate solutions. Corros. Sci. 48, 994–1003 (2005)CrossRefGoogle Scholar
  8. 8.
    Okuyama, M., Haruyama, S.: Passive film formed on nickel in a neutral solution. Corros. Sci. 14, 1–14 (1974)CrossRefGoogle Scholar
  9. 9.
    Paik, W., Szklarska-Smialowska, Z.: Reflectance and ellipsometric study of anodic passive films formed on nickel in sodium hydroxide solution. Surf. Sci. 96, 401–412 (1980)CrossRefADSGoogle Scholar
  10. 10.
    Visscker, W., Barendrecht, E.: Anodic oxide films of nickel in alkaline electrolyte. Surf. Sci. 135, 436–452 (1983)CrossRefADSGoogle Scholar
  11. 11.
    De Souza, L.M.M., Kong, F.P., McLarnon, F.R., Muller, R.H.: Spectroscopic ellipsometry study of nickel oxidation in alkaline solution. Electrochim. Acta. 42, 1253–1267 (1997)CrossRefGoogle Scholar
  12. 12.
    Hopper, M.A., Ord, J.L.: An optical study of the growth and oxidation of nickel hydroxide films. J. Electrochem. Soc. 120, 183–187 (1973)CrossRefGoogle Scholar
  13. 13.
    Wolf, J.F., Yeh, L.-S.R., Damjanovic, A.: Anodic oxide films at nickel electrodes in alkaline solutions—I. Kinetics of growth of the β-Ni(OH)2 phase. Electrochim. Acta. 26, 409–416 (1981)CrossRefGoogle Scholar
  14. 14.
    Weininger, J.L., Breiter, M.W.: Hydrogen evolution and surface oxidation of nickel electrodes in alkaline solution. J. Electrochem. Soc. 111, 707–712 (1964)CrossRefGoogle Scholar
  15. 15.
    Abd El Aal, E.E.: Anodic oxide films on nickel electrode in borate solutions. Corros. Sci. 45, 641–658 (2003)CrossRefGoogle Scholar
  16. 16.
    Abd El Aal, E.E.: Breakdown of passive film on nickel in borate solutions containing halide anions. Corros. Sci. 45, 759–775 (2003)CrossRefGoogle Scholar
  17. 17.
    Abd El Haleem, S.M., Abd El Aal, E.E.: Electrochemical behavior of nickel in HNO3 and the effect of chloride ions. J. Mater. Eng. Perform. 13, 784–792 (2004)CrossRefGoogle Scholar
  18. 18.
    Abd El Aal, E.E., Abd El Haleem, S.M.: The influence of halide anions on the anodic behaviour of nickel in borate solutions. Chem. Eng. Technol. 28, 1158–1165 (2005)CrossRefGoogle Scholar
  19. 19.
    Burk, L.D., Twomey, T.A.M.: Voltammetric behaviour of nickel in base with particular reference to thick oxide growth. J. Electroanal. Chem. 126, 101–119 (1984)CrossRefGoogle Scholar
  20. 20.
    Visintin, A., Chialvo, A.C., Triaca, W.E., Arvia, A.J.: The electroformation of thick hydrous nickel hydroxide films through the application of periodic potential signals. J. Electroanal. Chem. 225, 227–239 (1987)CrossRefGoogle Scholar
  21. 21.
    Seghiouer, A., Chevalet, J., Barhoun, A., Lantelme, F.: Electrochemical oxidation of nickel in alkaline solutions: a voltammetric study and modeling. J. Electroanal. Chem. 442, 113–123 (1998)CrossRefGoogle Scholar
  22. 22.
    Abd El Aal, E.E., Abd El Wanees, S., Abd El Aal, A.: Anodic behaviour and passivation of a lead electrode in sodium carbonate solutions. J. Mater. Sci. 28, 2607–2614 (1993)CrossRefGoogle Scholar
  23. 23.
    Abd El Aal, E.E.: Cyclic voltammetric behaviour of the lead electrode in sodium sulphate solutions. J. Power Sources 102, 233–241 (2001)CrossRefGoogle Scholar
  24. 24.
    Abd El Haleem, S.M., Abd El Aal, E.E.: Electrochemical behaviour of iron in alkaline sulphide solutions. Corros. Eng. Sci. Technol. 43, 173–178 (2008)CrossRefGoogle Scholar
  25. 25.
    Abd El Aal, E.E.: Studies on the pitting corrosion of lead in carbonate media. Anti-Corros. 48, 116–125 (2001)CrossRefGoogle Scholar
  26. 26.
    Abd El Haleem, S.M., Ateya, B.G.: Cyclic voltammetry of copper in sodium hydroxide solutions. J. Electroanal. Chem. 117, 309–319 (1981)CrossRefGoogle Scholar
  27. 27.
    El Tantawy, Y.A., El Kharafi, F.M.: Role of Cl in breakdown of Ni passivity in aqueous NaOH solutions. Electrochim. Acta 27, 691–699 (1982)CrossRefGoogle Scholar
  28. 28.
    Bard, A.J., Faulkner, L.R.: Electrochemical Methods: Fundamental and Application, p. 218. Wiley, New York (1980)Google Scholar
  29. 29.
    Pourbaix, M.: Atlas of Electrochemical Equilibria, p. 330. Pergamon Press, Oxford (1966)Google Scholar
  30. 30.
    MacDougall, B., Mitchell, D.F., Graham, M.J.: Changes in oxide films on nickel during long-term passivation. J. Electrochem. Soc. 132, 2895–2898 (1985)CrossRefGoogle Scholar
  31. 31.
    Hara, N., Sugimoto, K.: In-situ analysis of passivation and transpassivation film on nickel by modulated UV-visible reflection spectroscopy. J. Jpn. Inst. Met. 47, 39–47 (1983)Google Scholar
  32. 32.
    Dickinson, T., Povey, A.F., Sherwood, P.M.A.: Dissolution and passivation of nickel. An x-ray photoelectron spectroscopic study. J. Chem. Soc. Faraday Trans 1, 73, 327–343 (1977)CrossRefGoogle Scholar
  33. 33.
    Schrebler Guzmàn, R.S., Vilche, J.R., Arvia, A.J.: The kinetics and mechanism of the nickel electrode-III. The potentiodynamic response of nickel electrodes in alkaline solutions in the potential region of Ni(OH)2 formation. Corros. Sci 18, 765–778 (1978)CrossRefGoogle Scholar
  34. 34.
    Hummel, R.E., Smith, R.J., Verink, E.D., Jr.: The passivation of nickel in aqueous solutions-I. The identification of insoluble corrosion products on nickel electrodes using optical and ESCA techniques. Corros. Sci. 27, 803–813 (1987)CrossRefGoogle Scholar
  35. 35.
    Uno, S.F.: Investigations on the reaction mechanism of the nickel-cadmium cell. J. Elecrochem. Soc. 107, 661–667 (1960)CrossRefGoogle Scholar

Copyright information

© ASM International 2008

Authors and Affiliations

  1. 1.Chemistry Department, Faculty of ScienceZagazig UniversityZagazigEgypt

Personalised recommendations