Analytical and Numerical Solution of the Stress Field and the Dynamic Stress Intensity Factors in a Cracked Plate under Sinusoidal Loading

  • Abdessattar Aloui
  • Khemais Hamrouni
  • Tahar Fakhfakh
  • Mohamed Haddar
Technical Article---Peer-Reviewed


A cracked plate subjected to a sinusoidal loading perpendicular to its plane is considered, and the analytical solution of the dynamic vibration behavior of a plate, which allowed the determination of the stress field near the crack tip, is developed. A mixed mode of loading near the crack tip has been established and described with dynamic stress intensity factors K I (z,t) and K II (z,t) associated with modes I and II crack openings, respectively. To validate the analytical results, a finite element analysis (FEA) of a 1 × 1 m square plate with a thickness of 1 cm, having a middle crack of 10 cm in length, is made. The results have shown significant agreement between analytical and FEA findings.


Plate Crack Dynamic loading Dynamic stress intensity factors Finite element analysis 


  1. 1.
    Fedelinski, P., Aliabadi, M.H., Rooke, D.P.: Boundary element formulations for the dynamic analysis of cracked structures. Eng. Anal. Boundary Elements 17, 45–56 (1996)CrossRefGoogle Scholar
  2. 2.
    Enderlein, M., Ricoeur, A., Kuna, M.: Comparison of finite element techniques for 2D and 3D crack analysis under impact loading. Int. J. Solids Struct. 40, 3425–3437 (2003)zbMATHCrossRefGoogle Scholar
  3. 3.
    Hosseini-Tehrani, P., Hosseini-Godarzi, A.R., Tavangar, M.: Boundary element analysis of stress intensity factor KI in some two-dimensional dynamic thermo-elastic problems. Eng. Anal. Boundary Elements 29, 232–240 (2005)CrossRefGoogle Scholar
  4. 4.
    Theocaris, P.S., Ioakimidis, N.I.: Stress intensity factors and complex path-independent integrals. J. Appl. Mech. 47, 342–346 (1980)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Miyazaki, N.: Application of line-spring model to dynamic stress intensity factor analysis of pre-cracked bending specimen. Eng. Fract. Mech. 38, 321–326 (1991)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Chen, Y.M.: Numerical computation of dynamic stress intensity factors by a Lagrangian finite-difference method (the HEMP CODE). Eng. Fract. Mech. 7, 653–660 (1975)CrossRefGoogle Scholar
  7. 7.
    Gierkmann, K.: Flaechentragwerke, sechste Auflage. Springer Verlag, Wien (1984)Google Scholar
  8. 8.
    Szabó, I.: Hoehere Technische Mechanik, zweiter Nachdruck der fuenften verbesserten und erweiterten Auflage. Springer Verlag, Berlin (1984)Google Scholar
  9. 9.
    Sladek, J., Sladek, V., Fedelinski, P.: Contour integrals for mixed-mode crack analysis: effect of non-singular terms. Theor. Appl. Fract. Mech. 27, 115–127 (1997)CrossRefGoogle Scholar
  10. 10.
    Saehn, S., Goeldner, H.: Bruch- und Beurteilungskriterien in der Festigkeitslehre. VEB Fachbuchverlag Leipzig (1989)Google Scholar

Copyright information

© ASM International 2008

Authors and Affiliations

  • Abdessattar Aloui
    • 1
  • Khemais Hamrouni
    • 1
  • Tahar Fakhfakh
    • 1
  • Mohamed Haddar
    • 1
  1. 1.Unit of Mechanic, Modelisation and Production (U2MP)National School of Engineers of SfaxSfaxTunisia

Personalised recommendations