Skip to main content
Log in

Failures of Structures and Components by Metal-Induced Embrittlement

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

The basic aspects of liquid–metal embrittlement (LME) and solid metal-induced embrittlement (SMIE) are concisely reviewed, followed by case histories of failures involving (i) LME of an aluminium-alloy pipe by mercury in a natural-gas plant, (ii) SMIE of a brass valve in an aircraft-engine oil-cooler by internal lead particles, (iii) LME of a cadmium-plated steel screw from a crashed helicopter, (iv) LME of a cold-formed steel stiffener during galvanizing, and (v) LME of a steel gear by a copper alloy from an overheated bearing. These case histories illustrate how failures by LME and SMIE can be diagnosed and distinguished from other failure modes. The underlying causes of the failures and how they might be prevented are also discussed. Several beneficial uses of LME in failure analysis are then outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

Notes

  1. The optimum exposure conditions depend sensitively on the alloy and grain structure and, hence, trials are required.

References

  1. Plinius Secundus, C. (or Pliny): The History of the World Commonly Called The Natural History, translated by P. Holland. pp. 364–365. McGraw-Hill (1964)

  2. Lynch, S.P.: Failures of structures and components by environmentally assisted cracking. Eng. Failure Anal. 1, 77–90 (1994)

    Article  CAS  Google Scholar 

  3. Lynch, S.P.: Failure of engineering components due to environmentally assisted cracking. Pract. Failure Anal. 3, 33–42 (2003)

    Article  Google Scholar 

  4. Kamdar, M.H.: Liquid metal embrittlement. In: Failure Analysis and Prevention, vol. 11, pp. 225–238. ASM Handbook, American Society for Metals, Metals Park, OH (1986)

  5. Lynch, S.P.: Metal induced embrittlement of materials. Mater. Charact. 28, 279–289 (1992)

    Article  CAS  Google Scholar 

  6. Fernandes, P.J.L., Clegg, R.E., Jones, D.R.H.: Failure by liquid metal induced embrittlement. Eng. Failure Anal. 1, 51–63 (1994)

    Article  CAS  Google Scholar 

  7. Old, C.F.: Liquid metal embrittlement of nuclear materials. J. Nuclear Mater. 92, 2–25 (1980)

    Article  CAS  Google Scholar 

  8. Kamdar, M.H.: Embrittlement by liquid metals. Progr. Mater. Sci. 15, 289–374 (1973)

    Article  CAS  Google Scholar 

  9. Shunk, F.A., Warke, W.R.: Specificity of liquid metal embrittlement. Scripta Metall. 8, 519–526 (1974)

    Article  CAS  Google Scholar 

  10. Nicholas, M.G.: A survey of literature on liquid metal embrittlement of metals and alloys. In: Kamdar, M.H. (ed.) Embrittlement by Liquid and Solid Metals, pp. 27–50. The Metallurgical Society of AIME (1984)

  11. McIntyre, D.R., Oldfield, J.W.: Environmental attack of ethylene plant alloys by mercury. In: Proc. Conf. “Corrosion Prevention in the Process Industries....What European Industry is Doing”, pp. 239–252. NACE, Amsterdam, The Netherlands (1989)

  12. Speidel, M.O.: Current understanding of stress corrosion crack growth in aluminum alloys. In: Scully, J.C. (ed.) The Theory of Stress Corrosion Cracking in Alloys, pp. 289–344. NATO, Brussels (1971)

    Google Scholar 

  13. Feeney, J.A., Blackburn, M.J.: The Status of Stress Corrosion Cracking of Titanium Alloys in Aqueous Solutions. In: Scully J.C. (ed.) The Theory of Stress Corrosion Cracking in Alloys, pp. 355–398. NATO, Brussels (1971)

    Google Scholar 

  14. Lynch, S.P.: Metallographic and Fractographic Aspects of Liquid-Metal Embrittlement. In: Louthan, M.R., Jr., McNitt, R.P., Sisson, R.D. Jr. (eds.) Environmental Degradation of Materials in Aggressive Environments, pp. 229–244. Virginia Polytechnic Inst (1981)

  15. Pereiro-López, E., Ludwig, W., Bellet, D.: Discontinuous penetration of liquid gallium into grain boundaries of Al polycrystals. Acta Mater. 52, 321–332 (2004)

    Article  Google Scholar 

  16. Marié, N., Wolski, K., Biscondi, M.: Grain boundary penetration of nickel by liquid bismuth as a film of nanometric thickness. Scripta Mater. 43, 943–949 (2000)

    Article  Google Scholar 

  17. Lynch, S.P.: Environmentally assisted cracking: overview of evidence for an adsorption-induced localised slip process. Acta Metall. 20, Overview No. 74, 2639–2661 (1988), and references therein

  18. Drushitz, A.P., Gordon, P.: Solid metal induced embrittlement of materials. pp. 285–316, In: Kamdar, M.H. (ed.) Embrittlement by Liquid and Solid Metals. The Metallurgical Society of AIME (1984), and other papers in this conference proceedings

  19. Lynch, S.P.: Solid metal-induced embrittlement of aluminium alloys and other materials. Mat. Sci. Eng. A108, 203–212 (1989)

    CAS  Google Scholar 

  20. Gordon, P.: Metal-induced embrittlement of metals—an evaluation of embrittler transport mechanisms. Metal. Trans. A 9A, 267–273 (1978)

    Article  CAS  Google Scholar 

  21. Clegg, R.E.: A fluid flow based model to predict liquid metal induced embrittlement crack propagation rates. Eng. Frac. Mech. 68, 1777–1790 (2001)

    Article  Google Scholar 

  22. Pinnel, M.R., Bennet, J.E.: Voluminous oxidation of aluminium by continuous dissolution in a wetting mercury film. J. Mater. Sci. 7, 1016–1026 (1972)

    Article  CAS  Google Scholar 

  23. Leeper, J.E.: Mercury—LNG’s problem. Hydrocarbon Process. 59(11), 237–240 (1980)

    CAS  Google Scholar 

  24. Wilhelm, S.M., McArthur A., Kane, R.D.: Methods to combat liquid metal embrittlement in cryogenic aluminum heat exchangers. In Proc. 73rd GPA Annual Convention, pp. 62–71, March (1994)

  25. Lund, D.L.: Causes and remedies for mercury exposure to aluminum cold boxes. In: Proc. 75th GPA Annual Convention, pp. 282–287 (1996)

  26. Nelson, D.R.: Mercury attack of brazed aluminum heat exchangers in cryogenic gas service. In: Proc. 73rd GPA Annual Convention, pp. 178–183, March (1994)

  27. English, J.J., Duquette, D.J.: Mercury liquid embrittlement failure of 5083-0 aluminum alloy piping. In: Handbook of Case Histories in Failure Analysis, vol. 2, pp. 207–213, ASM (1993)

  28. Coade, R., Coldham, D.: The Interaction of Mercury and Aluminium in Heat Exchangers in a Natural Gas Plant. In: Proc. 8th Int. Conference & Exhibition, Operating Pressure Equipment, Melbourne, Australia, pp. 183–190 (2005)

  29. Rostoker, W., McCaughey, J.M., Markus, H.: Embrittlement by Liquid Metals. Reinhold Publishing Corp., New York (1960)

    Google Scholar 

  30. Sweet, E.D., Lynch, S.P., Bennett, C.G., Nethercott, R.B., Musulin, I.: Effects of alkali-metal impurities on fracture toughness of 2090 Al–Li–Cu extrusions. Metall. Mater. Trans. A 27A, 3530–3541 (1996)

    Article  CAS  Google Scholar 

  31. Stanzl, S.E., Ebenberger, H.M.: Concepts of fatigue crack growth thresholds gained by the ultrasound method. In: Davidson, D.L., Suresh, S. (eds.) Fatigue Crack Growth Threshold Concepts, pp. 399–416. Met. Soc. AIME (1984)

  32. Lynch, S.P.: Progression markings, striations, and crack-arrest markings on fracture surfaces. Mater. Sci. Eng. A 468–470, 74–80 (2007)

    Google Scholar 

  33. Lynch, S.P., Edwards, D.P., Crosky, A.: Failure of a screw in a helicopter fuel-control unit: was it the cause of a fatal crash? J. Fail. Anal. Prev. 4, 39–49 (2004)

    Article  Google Scholar 

  34. Hot dip galvanised coatings. In: ASM Metals Handbook, vol. 5, pp. 323–332. American Society for Metals, Metals Park, OH (1986)

  35. Le May, I., Koul, A.K., Dainty, R.V.: Fracture mechanisms in a series of locomotive axle failures. Mater. Charact. 26, 235–251 (1991)

    Article  CAS  Google Scholar 

  36. ASTM, B154–89: Standard Test Method for Mercurous Nitrate Test for Copper and Copper Alloys (1990)

  37. ISO 196–1978 (E) Wrought Copper and Copper Alloys—Detection of Residual Stress—Mercury (I) Nitrate Test

  38. Lynch, S.P., Edwards, D.P., Nethercott, R.B., Davidson, J.L.: Failures of nickel–aluminium bronze hydraulic couplings, with comments on general procedures for failure analysis. Pract. Failure Anal. 2, 50–61 (2002)

    Google Scholar 

  39. Lynch, S.P.: Progress towards understanding mechanisms of hydrogen embrittlement and stress-corrosion cracking. In: Paper 07493, NACE Corrosion Conference Proceedings (2007)

  40. Hull, D.: Fractography—Observing, Measuring and Interpreting Fracture Surface Topography. Cambridge Univ. Press (1999)

Download references

Acknowledgements

The author would like to thank (i) R. Coade, D. Coldham, and H. Moss for their major contributions and micrographs regarding the failure of the aluminium alloy inlet nozzle, (ii) G. Redmond and R. Byrnes for information and micrographs concerning the failure of the brass valve from an aircraft-engine oil-cooler, (iii) M. Broadhurst for information and samples regarding the collapse of the grain silo, and (iv) I. Wills for information and samples connected with the failure of the planetary gears.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Lynch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lynch, S.P. Failures of Structures and Components by Metal-Induced Embrittlement. J Fail. Anal. and Preven. 8, 259–274 (2008). https://doi.org/10.1007/s11668-008-9124-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-008-9124-y

Keywords

Navigation