Journal of Failure Analysis and Prevention

, Volume 7, Issue 6, pp 450–455 | Cite as

Cyclic Behavior and Damage Analysis of Brass under Cyclic Torsional Loading

  • Ridha Mnif
  • Mohamed Kchaou
  • Riadh Elleuch
  • Foued Halouani
Peer Reviewed


Fatigue behavior of brass was studied at a constant deformation rate of 5.6 × 10−3 s−1 to understand the cyclic behavior and fatigue life under cyclic torsional deformation. Strains were in the range of 0.35 to 4.2%. In the as-drawn condition, it was found that the cyclic hardening/softening behavior strongly depends on the strain amplitude. For low strain amplitude, cyclic saturation occurred after an initial cyclic hardening stage, but for high strain amplitude, saturation could not be reached. Cyclic stress-strain (CSS) curve showed the presence of three distinct regions with a short quasi-plateau region in the intermediate amplitude range. Quantitative fatigue damage was assessed by microscopic observations of surface cracks.


Brass Torsion Hardening/softening Cyclic strain–stress Fatigue life Damage 


  1. 1.
    Kuznicka, B.: Fatigue failure analysis of copper pressure conduit. Eng. Fail. Anal. 9, 703–708 (2002).CrossRefGoogle Scholar
  2. 2.
    Chen, C.K., Lin, C.Y.: Failure analysis of brass rotor bars. Eng. Fail. Anal. 8, 293–301 (2001).CrossRefGoogle Scholar
  3. 3.
    Huang, H.L., Hob, N.J.: The observation of dislocation reversal in front of crack tips of polycrystalline copper after reducing maximum load. Mater. Sci. Eng. A 345, 215–222 (2003).CrossRefGoogle Scholar
  4. 4.
    Murakamia, Y., Miller, K.J.: What is fatigue damage? A viewpoint from the observation of low cycle fatigue process. Int. J. Fat. 27, 991–1005 (2005).CrossRefGoogle Scholar
  5. 5.
    Jia, W.P., Fernandes, J.V.: Mechanical behavior and the evolution of the dislocation structure of copper polycrystal deformed under fatigue-tension and tension-fatigue sequential strain paths. Mater. Sci. Eng. A 348, 133–144 (2003).CrossRefGoogle Scholar
  6. 6.
    Zhang, J., Jiang, Y.: Fatigue of polycrystalline copper with different grain sizes and texture. Int. J. Plast. 22, 536–556 (2006).CrossRefGoogle Scholar
  7. 7.
    Zhang, Z.F., Wang, Z.G., Sun, Z.M.: Evolution and microstructural of deformation bands in fatigued copper single crystals. Acta Mater. 49, 2875–2886 (2001).CrossRefGoogle Scholar
  8. 8.
    Yang, J.H., Zhanh, X.P., Mai, Y.-W., Jia, W.P., Ke, W.: Environmental effects on deformation mechanism and dislocation microstructure in fatigued copper single crystal. Mater. Sci. Eng. A 396, 403–408 (2005).CrossRefGoogle Scholar
  9. 9.
    Wang, Z.: Cyclic stress-strain response of alpha brass single crystals oriented for easy glide. Mater. Sci. Eng. A183, L13 (1994).CrossRefGoogle Scholar
  10. 10.
    Carstensen, J.V.: Ph.D. Thesis. Technical University of Denmark. 1998.Google Scholar
  11. 11.
    Wejdemann, C., Pedersen, O.B.: Atomic force microscopy of the intense slip localization causing fatigue crack initiation in polycrystalline brass. Mater. Sci. Eng. A 387–389, 556–559 (2004).Google Scholar
  12. 12.
    Wang, Z., Gong, B., Wang, Z.G.: Cyclic deformation behavior of Cu-30 Wt % Zn single crystals oriented for single slip-І cyclic deformation response and slip band behavior. Acta Metall. 47, 307–315 (1999).Google Scholar
  13. 13.
    Carstensen, J.V., Pedersen, O.B.: Texture and grain-size effects on cyclic plasticity in copper and copper-zinc. Mater. Sci. Eng. A 234–236, 497 (1997).Google Scholar
  14. 14.
    Gong, B., Wang, Z., Gong, B., Wang, Z.G.: Cyclic deformation behavior of Cu-30 Wt% Zn single crystals oriented for single slip-ІІ dislocations structures. Acta Metall. 47, 317–324 (1999).Google Scholar
  15. 15.
    Bressan, J.D., Unfer, R.K.: Construction and validation tests of a torsion test machine. J. Mater. Process. Technol. 179, 23–29 (2006).CrossRefGoogle Scholar
  16. 16.
    Corrêa, E.C.S., Aguilar, M.T.P., Silva, E.M.P., Cetlin, P.R.: The effect of sequential tensile and cyclic torsion straining on work hardening of steel and brass. J. Mater. Process. Technol. 142, 282–288 (2003).CrossRefGoogle Scholar
  17. 17.
    Kaneko, Y., Ishikawa, M., Hashimoto, S.: Dislocation structures around crack tips of fatigued polycrystalline copper. Mater. Sci. Eng A 400–401, 418–421 (2005).Google Scholar
  18. 18.
    El-Madoun, Y., Mohamed, A., Bassim, M.N.: Cyclic stress strain behavior of polycrystalline nickel. Mater. Sci. Eng. A 385, 140–147 (2004).CrossRefGoogle Scholar
  19. 19.
    Mayer, H.: Ultrasonic torsion and tension–compression fatigue testing: Measuring principles and investigations on 2024-T351 aluminium alloy. Int. J. Fat. 28, 1446–1455 (2006).CrossRefGoogle Scholar
  20. 20.
    Ritchie, R., McClintock, F., Nayeb-Hashemi, H., Ritter, A.: Mode III fatigue crack propagation in low alloy steel. Met. Trans. A 13, 101–110 (1982).CrossRefGoogle Scholar
  21. 21.
    Tschegg, E.K.: Fatigue crack growth in high and low strength steel under torsional loading. Theor. Appl. Fract. Mech. 3, 157–178 (1985).CrossRefGoogle Scholar

Copyright information

© ASM International 2007

Authors and Affiliations

  • Ridha Mnif
    • 1
  • Mohamed Kchaou
    • 1
  • Riadh Elleuch
    • 1
  • Foued Halouani
    • 1
  1. 1.Laboratoire des Systèmes Electro-mécaniques (LASEM)Ecole Nationale d’Ingénieurs de Sfax, TunisieSfaxTunisia

Personalised recommendations