Perspectives on Environmental Barrier Coatings (EBCs) Manufactured via Air Plasma Spray (APS) on Ceramic Matrix Composites (CMCs): A Tutorial Paper

Abstract

There are many sets of information in the literature (e.g., papers, books and websites) about the great achievements that are expected for aerospace gas turbine engines by the employment of ceramic matrix composites (CMCs) and thermally sprayed environmental barrier coatings (EBCs) in their hot zones (e.g., combustion chambers, vanes, shrouds, blades and afterburners). Among these achievements, it is typically highlighted (i) turbine weight reduction, (ii) reduced fuel consumption, (iii) higher operation temperatures, (iv) superior thrust-to-weight ratio and (v) lower emission of toxic gases to the atmosphere. Although these achievements are true, they are generally not well-explained to the reader on how together they come to be. In addition, according to “conventional wisdom”, some of these engineering feats are in fact opposing each other (e.g., higher operation temperatures versus lower emissions). The objective of this tutorial paper is to present the reader how these feats are achieved by the concomitant combination of imaginative engineering. It will explain the non-stop driving force for increasing combustion temperatures; show the basic concepts of CMCs, the paramount need of EBCs, and the complexity of creating EBC architectures via air plasma spray (APS). Finally, highlights on how EBCs/CMCs are tested at high temperature will be provided. The content of this paper shall be understood by anyone with basic knowledge in materials processing and surface engineering.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Adapted from Padture (Ref 2) and Clarke et al (Ref 11). (b) Combustion temperature as a function of the specific core power of a gas turbine (inverted plot)—adapted from Perepezko (Ref 13)

Fig. 3

Adapted from Leonard and Stegmaier (Ref 17)

Fig. 4

Source: Ref. 21

Fig. 5

Source: Ref. 44

Fig. 6

Source: Ref. 21

References

  1. 1.

    I. Spitsberg and J. Steibel, Thermal and Environmental Barrier Coatings for SiC/SiC CMCs in Aircraft Engine Application, Int. J. Appl. Ceram. Technol., 2004, 1(4), p 291–301.

    CAS  Article  Google Scholar 

  2. 2.

    N.P. Padture, Advanced Structural Ceramics in Aerospace Propulsion, Nat. Mater., 2016, 15, p 804–809.

    CAS  Article  Google Scholar 

  3. 3.

    A.G. Evans and D.B. Marshall, The Mechanical Behavior of Ceramic Matrix Composites, Acta Metall., 1989, 37(10), p 2567–2583.

    CAS  Article  Google Scholar 

  4. 4.

    J.A. Dever, M.V. Nathal and J.A. DiCarlo, Research on High-Temperature Aerospace Materials at NASA Glenn Research Center, J. Aerosp. Eng., 2013, 26(2), p 500–514.

    Article  Google Scholar 

  5. 5.

    E.J. Opila, J.L. Smialek, R.C. Robinson, D.S. Fox and N.S. Jacobson, SiC Recession Caused by SiO2 Scale Volatility under Combustion Conditions: II, Thermodynamics and Gaseous-diffusion Model, J. Am. Ceram. Soc., 1999, 82(7), p 1826–1834.

    CAS  Article  Google Scholar 

  6. 6.

    W. Braue and P. Mechnich, Tailoring Protective Coatings for All-oxide Ceramic Matrix Composites in High Temperature/High Heat Flux Environments and Corrosive Media, Mater. Sci. Eng. Technol. (Materialwissenschaft und Werkstofftechnik), 2007, 38(9), p 690–697.

    CAS  Google Scholar 

  7. 7.

    K.N. Lee, D.S. Fox, J.I. Eldridge, D. Zhu, R.C. Robinson, N.P. Bansal and R.A. Miller, Upper Temperature Limit of Environmental Barrier Coatings Based on Mullite and BSAS, J. Am. Ceram. Soc., 2003, 86(8), p 1299–1306.

    CAS  Article  Google Scholar 

  8. 8.

    Y. Xu, X. Hu, F. Xu and K. Li, Rare Earth Silicate Environmental Barrier Coatings: Present Status and Prospective, Ceram. Int., 2017, 43, p 5847–5855.

    CAS  Article  Google Scholar 

  9. 9.

    U. Steinhauser, W. Braue, J. Goring, B. Kanka and H. Schneider, A New Concept for Thermal Protection of All-mullite composites in Combustion Chambers, J. Eur. Ceram. Soc., 2000, 20, p 651–658.

    CAS  Article  Google Scholar 

  10. 10.

    P. Mechnich and W. Braue, Air Plasma-sprayed Y2O3 Coatings for Al2O3/Al2O3 Ceramic Matrix Composites, J. Eur. Ceram. Soc., 2013, 33, p 2645–2653.

    CAS  Article  Google Scholar 

  11. 11.

    D.R. Clarke, M. Oechsner and N.P. Padture, Thermal-Barrier Coatings for More Efficient Gas-Turbine Engines, MRS Bull., 2012, 37(10), p 891–898.

    CAS  Article  Google Scholar 

  12. 12.

    S. Farokhi, Aircraft Propulsion—2nd Edition, Wiley, Chichester, 2015, p 8–9

    Google Scholar 

  13. 13.

    J.H. Perepezko, The Hotter the Engine the Better, Science, 2009, 326, p 1068–1069.

    CAS  Article  Google Scholar 

  14. 14.

    A.H. Lefebvre and D.R. Ballal, Gas Turbine Combustion—Alternative Fuels and Emissions, 3rd Edition Edition, CRC Press, Boca Raton, 2010, p 91–92

    Google Scholar 

  15. 15.

    Rolls-Royce—The Jet Engine, Renault Printing Co Ltd, Birmingham, 1996, p 35–37

  16. 16.

    T. Bhatia, D. Jarmon, J. Shi, S. Kearney, A. Kojovic, J. Hu and A. Prociw, CMC Combustor Liner Demonstration in a Small Helicopter Engine, in Proceedings of ASME TurboExpo 2010: Power for Land, Sea and Air, paper #GT2010-23810, p 509–513. https://doi.org/10.1115/GT2010-23810

  17. 17.

    G. Leonard and J. Stegmaier, Development of an Aeroderivative Gas Turbine Dry Low Emissions Combustion System, J. Eng. Gas Turbines Power, 1994, 116, p 542–546.

    CAS  Article  Google Scholar 

  18. 18.

    http://www.acare4europe.org/sria/flightpath-2050-goals/protecting-environment-and-energy-supply-0 (February 16, 2018)

  19. 19.

    https://www.gpo.gov/fdsys/pkg/FR-2012-06-18/pdf/2012-13828.pdf (February 16, 2018)

  20. 20.

    https://www.safran-aircraft-engines.com/commercial-engines/single-aisle-commercial-jets/leap/leap-1b (February 16, 2018)

  21. 21.

    K.N. Lee, Yb2Si2O7 Environmental Barrier Coatings with Reduced Bond Coat Oxidation Rates Via Chemical Modifications for Long Life, J. Am. Ceram. Soc., 2019, 102(3), p 1507–1521.

    CAS  Article  Google Scholar 

  22. 22.

    K.N. Lee, Current Status of Environmental Barrier Coatings for Si-Based Ceramics, Surf. Coat. Technol., 2000, 133–134, p 1–7.

    Google Scholar 

  23. 23.

    K.N. Lee, J.I. Eldridge and R.C. Robinson, Residual Stresses and Their Effects on the Durability of Environmental Barrier Coatings for SiC Ceramics, J. Am. Ceram. Soc., 2005, 88(12), p 3483–3488.

    CAS  Article  Google Scholar 

  24. 24.

    E.J. Opila and R. Hann, Paralinear Oxidation of CVD SiC in Water Vapor, J. Am. Ceram. Soc., 1997, 80(1), p 197–205.

    CAS  Article  Google Scholar 

  25. 25.

    K.N. Lee, Environmental barrier coatings for CMCs, Ceramic Matrix Composites. N.P. Bansal, J. Lamon Ed., Wiley, New York, 2015, p 430–451

    Google Scholar 

  26. 26.

    K.N. Lee, D.S. Fox and N.P. Bansal, Rare Earth Silicate Environmental Barrier Coatings for SiC/SiC Composites and Si3N4 Ceramics, J. Eur. Ceram. Soc., 2005, 25, p 1705–1715.

    CAS  Article  Google Scholar 

  27. 27.

    N.S. Jacobson, Silica Activity Measurements in the Y2O3–SiO2 System and Applications to Modeling of Coating Volatility, J. Am. Ceram. Soc., 2014, 97, p 1959–1965.

    CAS  Article  Google Scholar 

  28. 28.

    G.C.C. Costa and N.S. Jacobson, Mass Spectrometric Measurements of the Silica Activity in the Yb2O3–SiO2 System and Implications to Assess the Degradation of Silicate-Based Coatings in Combustion Environments, J. Eur. Ceram. Soc., 2015, 35, p 4259–4267.

    CAS  Article  Google Scholar 

  29. 29.

    M. Fritsch, H. Klemm, The water vapor hot gas corrosion behavior of Al2O3-Y2O3 materials, Y2SiO5 and Y3Al5O12-coated alumina in a combustion environment, in The 30th Int. Conf. & Exp. On Adv. Ceram. & Composites. Cocoa Beach, FL; January 2006.

  30. 30.

    R.A. Golden, K. Mueller and E.J. Opila, Thermochemical Stability of Y2Si2O7 in High-Temperature Water Vapor, J. Am. Ceram. Soc., 2020, 103(8), p 4517–4535.

    CAS  Article  Google Scholar 

  31. 31.

    B.E. Deal and A.S. Grove, General Relationship for the Thermal Oxidation of Silicon, J. Appl. Phys., 1965, 36(12), p 3770–3778.

    CAS  Article  Google Scholar 

  32. 32.

    E.J. Opila, Variation of the Oxidation Rate of Silicon Carbide with Water-Vapor Pressure, J. Am. Ceram. Soc., 1999, 82(3), p 625–636.

    CAS  Article  Google Scholar 

  33. 33.

    B.T. Richards, K.A. Young, F. de Franqueville, S. Sehr, M.R. Begley and H.N.G. Wadley, Response of Ytterbium Disilicate-Silicon Environmental Barrier Coatings to Thermal Cycling in Water Vapor, Acta Mater., 2016, 106, p 1–14.

    CAS  Article  Google Scholar 

  34. 34.

    K.N. Lee and M. van Roode, Environmental Barrier Coatings Enhance Performance of SiC/SiC Ceramic Matrix Composites, Am. Ceram. Soc. Bulletin, 2019, 98(3), p 46–53.

    CAS  Google Scholar 

  35. 35.

    K. Grant, S. Kramer, J. Lofvander and C. Levi, CMAS Degradation of Environmental Barrier Coatings, Surf. Coat. Technol., 2007, 202, p 653–657.

    CAS  Article  Google Scholar 

  36. 36.

    K. Grant, S. Kramer, G. Seward and C. Levi, Calcium-Magnesium-Silicate Interaction with Yttrium Monosilicate Environmental Barrier Coatings, J. Am. Ceram. Soc., 2010, 93(10), p 3504–3511.

    CAS  Article  Google Scholar 

  37. 37.

    J. Harder, J. Ramirez-Rico, J.D. Almer, K.N. Lee and K.T. Faber, Chemical and Mechanical Consequences of Environmental Barrier Coating Exposure to Calcium-Magnesium-Aluminosilicate, J. Am. Ceram. Soc., 2011, 94(S1), p S178–S185.

    CAS  Article  Google Scholar 

  38. 38.

    F. Stolzenburg, M.T. Johnson, K.N. Lee, N.S. Jacobson and K.T. Faber, The Interaction of Calcium-Magnesium-Aluminum-Silicate with Ytterbium Silicate Environmental Barrier Materials, Surf. Coat. Technol., 2015, 284, p 44–50.

    CAS  Article  Google Scholar 

  39. 39.

    N.P. Padture, Environmental Degradation of High-Temperature Protective Coatings for Ceramic-Matrix Composites in Gas-Turbine Engines. NPJ Mater. Degrad. 11 (2019).

  40. 40.

    K.N. Lee, H. Fritze and Y. Ogura, Progress in Ceramic Gas Turbine Development, Vol 2, M. van Roode, M. Ferber, D.W. Richerson Ed., ASME Press, New York, 2003, p 641–664

    Google Scholar 

  41. 41.

    K.N. Lee, R.A. Miller and N.S. Jacobson, New generation of Plasma-Sprayed Mullite Coatings on Silicon-Carbide, J. Am. Ceram. Soc., 1995, 78(3), p 705–710.

    CAS  Article  Google Scholar 

  42. 42.

    G.S. Corman, Melt Infiltrated Ceramic Matrix Composites for Shrouds and Combustor Liners of Advanced Industrial Gas Turbines. Advanced Materials for Advance Industrial Gas Turbines (AMAIGT) Program Final Report. U.S. Department of Energy Cooperative Agreement DE-FC26-00CH11047, December 2010.

  43. 43.

    W.G. Mao, J.P. Jiang, Y.C. Zhou and C. Luc, Effects of Substrate Curvature Radius, Deposition Temperature and Coating Thickness on the Residual Stress Field of Cylindrical Thermal Barrier Coatings, Surf. Coat. Technol., 2011, 205, p 3093–3102.

    CAS  Article  Google Scholar 

  44. 44.

    C. Gatzen, D.E. Mack, O. Guillon and R. Vaßen, YAlO3-A Novel Environmental Barrier Coating for Al2O3/Al2O3–Ceramic Matrix Composites, Coatings, 2019, 9, p 609.

    CAS  Article  Google Scholar 

  45. 45.

    M. Fritsch, Heißgaskorrosion Keramischer Werkstffe in H2O-Haltigen RauchgasatmosphärenO-Haltigen Rauchgasatmosphären, Fraunhofer IRB Verlag, TU Dresden, Dresden, 2007.

    Google Scholar 

  46. 46.

    M. Fritsch, H. Klemm, M. Herrmann, A. Michaelis and B. Schenk, The Water Vapour Hot Gas Corrosion of Ceramic Materials, Ceram. Forum Int., 2010, 87, p 11–12.

    Google Scholar 

  47. 47.

    B.T. Richards, H. Zhao and H.N.G. Wadley, Structure, Composition, and Defect Control During Plasma Spray Deposition of Ytterbium Silicate Coatings, J. Mater. Sci., 2015, 50, p 7939–7957.

    CAS  Article  Google Scholar 

  48. 48.

    E. Garcia, H. Lee and S. Sampath, Phase and Microstructure Evolution in Plasma Sprayed Yb2Si2O7 Coatings, J. Eur. Ceram. Soc., 2019, 39, p 1477–1486.

    CAS  Article  Google Scholar 

  49. 49.

    E. Bakan, Y.J. Sohn, W. Kunz, H. Klemm and R. Vaßen, Effect of Processing on High-Velocity Water Vapor Recession Behavior of Yb-Silicate Environmental Barrier Coatings, J. Eur. Ceramic Soc., 2019, 39, p 1507–1513.

    CAS  Article  Google Scholar 

  50. 50.

    E. Bakan et al., Yb2Si2O7 Environmental Barrier Coatings Deposited by Various Thermal Spray Techniques: A Preliminary Comparative Study, J. Therm. Spray. Tech., 2017, 26, p. 1011–1024.

    CAS  Article  Google Scholar 

  51. 51.

    R. Vaßen, E. Bakan, C. Gatzen, S. Kim, D.E. Mack and O. Guillon, Environmental Barrier Coatings Made by Different Thermal Spray Technologies, Coatings, 2019, 9, p 784. https://doi.org/10.3390/coatings9120784

    CAS  Article  Google Scholar 

  52. 52.

    C. Gatzen, D.E. Mack, O. Guillon and R. Vaßen, Surface Roughening of Al2O3/Al2O3 Ceramic Matrix Composites by Nanosecond Laser Ablation Prior to Thermal Spraying, J. Laser Appl., 2019, 31, p 022018. https://doi.org/10.2351/1.5080546

    CAS  Article  Google Scholar 

  53. 53.

    C.M. Weyant and K.T. Faber, Processing–Microstructure Relationships for Plasma-Sprayed Yttrium Aluminum Garnet, Surf. Coat. Technol., 2008, 202, p 6081–6089.

    CAS  Article  Google Scholar 

  54. 54.

    R. S. Lima, APS Deposition of Y2O3 EBCs via the Metco 3MB APS Torch Using N2/H2 Plasma (NRC # 190322B1), unpublished research.

  55. 55.

    E. J. Opila, N. S. Jacobson, D. L. Myers and E. H. Copland, Predicting Oxide Stability in High Temperature Water Vapor, J. Metals, January (2006) 22-28.

  56. 56.

    M. Fritsch, H. Klemm, M. Herrmann and B. Schenk, Corrosion of Selected Ceramic Materials in Hot Gas Environment, J. Eur. Ceram. Soc., 2006, 26, p 3557–3565.

    CAS  Article  Google Scholar 

  57. 57.

    L. Lebel, R. Boukhili and S. Turenne, Damage to an A-N720 Ceramic Matrix Composite Under Simulated Gas Turbine Static Component Conditions Using Laser Heating, J. Compos. Mater., 2018, 52(30), p 4127–4138.

    CAS  Article  Google Scholar 

  58. 58.

    B. J. Harder, D. Zhu, M. P. Schmitt and D. E. Wolfe, High Temperature Multilayer Environmental Barrier Coatings Deposited Via Plasma Spray-Physical Vapor Deposition, https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150000326.pdf (June 1, 2020).

  59. 59.

    E. Bakan, G. Mauer, Y.H. Sohn, D. Koch and R. Vaßen, Application of High-Velocity Oxygen-Fuel (HVOF) Spraying to the Fabrication of Yb-Silicate Environmental Barrier Coatings, Coatings, 2017, 7, p 55. https://doi.org/10.3390/coatings7040055

    CAS  Article  Google Scholar 

  60. 60.

    E. Darthout, A. Quet, N. Brady and F. Gitzhofer, Lu2O3-SiO2-ZrO2 Coatings for Environmental Barrier Application by Solution Precursor Plasma Spraying and Influence of Precursor Chemistry, J. Therm. Spray Technol., 2014, 23(3), p 325–332.

    CAS  Article  Google Scholar 

  61. 61.

    C. Jiang, D. Cietek, R. Kumar and E.H. Jordan, Ytterbium Silicate Environmental Barrier Coatings Deposited Using the Solution-Based Precursor Plasma Spray, J. Thermal Spray Technol., 2020 https://doi.org/10.1007/s11666-020-01046-1

    Article  Google Scholar 

  62. 62.

    R.T. Bhatt, S.R. Choi, L.M. Cosgriff, D.S. Fox and K.N. Lee, Impact Resistance of Environmental Barrier Coated SiC/SiC Composites, Mater. Sci. Eng. A, 2008, 476, p 8–19.

    Article  CAS  Google Scholar 

  63. 63.

    Y. Okita, Y. Mizokami and J. Hasegawa, Experimental and Numerical Investigation of Environmental Barrier Coated Ceramic Matrix Composite Turbine Airfoil Erosion. J. Eng. Gas Turbines Power.

  64. 64.

    N.L. Ahlborg and D. Zhu, Calcium–Magnesium Aluminosilicate (CMAS) Reactions and Degradation Mechanisms of Advanced Environmental Barrier Coatings, Surf. Coat. Technol., 2013, 237, p 79–87.

    CAS  Article  Google Scholar 

  65. 65.

    H. Zhao, B.T. Richards, C.G. Levi and H.N.G. Wadley, Molten Silicate Reactions with Plasma Sprayed Ytterbium Silicate Coatings, Surf. Coat. Technol., 2016, 288, p 151–162.

    CAS  Article  Google Scholar 

  66. 66.

    F. Stolzenburg, P. Kenesei, J. Almer, K.N. Lee, M.T. Johnson and K.T. Faber, The Influence of Calcium-Magnesium-Aluminosilicate Deposits on Internal Stresses in Yb2Si2O7 Multilayer Environmental Barrier Coatings‘, Acta Mater., 2016, 105, p 189–198.

    CAS  Article  Google Scholar 

  67. 67.

    K.-I. Lee, L.T. Wu, R.T. Wub and P. Xiao, Mechanisms and Mitigation of Volcanic Ash Attack on Yttria Stablized Zirconia Thermal Barrier Coatings, Surf. Coat. Technol., 2014, 260, p 68–72.

    CAS  Article  Google Scholar 

  68. 68.

    D.L. Myers and N.S. Jacobson, Identification of Volatile Metal Hydroxides with Free Jet Expansion Sampling Mass Spectrometry, Calphad, 2019, 65, p 73–78.

    CAS  Article  Google Scholar 

  69. 69.

    T. Steinke, D. Sebold, D.E. Mack, R. Vaßen and D. Stöver, Novel Test Approach for Plasma-Sprayed Coatings Tested Simultaneously Under CMAS and Thermal Gradient Cycling Conditions, Surf. Coat. Technol., 2010, 205, p 2287–2295.

    CAS  Article  Google Scholar 

  70. 70.

    I. Yuri, T Hisamatsu, Recession rate prediction for ceramic materials in combustion gas flow, in Proceeding of SME Turbo Expo 2003 June 16–19, Atlanta, GA. CEPRI

  71. 71.

    J. Steibel, Ceramic Matrix Composites Taking Flight at GE Aviation, Am. Ceram. Soc. Bull., 2019, 98(3), p 30–33.

    Google Scholar 

  72. 72.

    www.ge.com/reports/its-official-guinness-world-records-certifies-ge9x-as-the-worlds-most-powerful-jet-engine/ (February 1, 2020)

  73. 73.

    www.geaviation.com/press-release/ge90-engine-family/ge9xs-new-taps-combustor-maintain-its-cool-under-fire (February 1, 2020)

  74. 74.

    https://www.aero-mag.com/ge-aviation-ge9x-boeing-777x/ (February 3, 2020)

  75. 75.

    https://www.boeing.com/commercial/777x/first-flight#/overview (July 4, 2020)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rogerio S. Lima.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is an invited paper. The authors were invited based on their experience, knowledge, and expertise in this area to provide expert perspectives on a subject relevant to thermal spray. The views expressed in the paper are those of the author(s).

Dr Dongming Zhu passed away May 30, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, K.N., Zhu, D. & Lima, R.S. Perspectives on Environmental Barrier Coatings (EBCs) Manufactured via Air Plasma Spray (APS) on Ceramic Matrix Composites (CMCs): A Tutorial Paper. J Therm Spray Tech (2021). https://doi.org/10.1007/s11666-021-01168-0

Download citation

Keywords

  • air plasma spray (APS)
  • ceramic matrix composites (CMCs)
  • environmental barrier coatings (EBCs)
  • gas turbine engines
  • oxide-oxide CMC
  • SiC/SiC CMC