Abstract
The low-dielectric inorganic adhesive is an important component of electromagnetic wave absorption coatings due to impedance matching with the atmospheric environment. Herein, high-enthalpy atmospheric plasma spraying (HE-APS) equipment is utilized to prepare Y2O3 ceramic coatings, and the influence of spraying power on dielectric and physical properties of Y2O3 ceramic coatings is systematically investigated. The surface and cross-sectional SEM images of Y2O3 coating show that the overall coating morphology is smooth and less porous at high spraying power. This result is consistent with the trend of coating density and porosity. The XRD pattern demonstrates that the Y2O3 coating possesses a stable cubic structure. The experimental results reveal that the dielectric properties of Y2O3 coating are mainly affected by the porosity. According to the dielectric mixing rule of composite materials, Y2O3 coating exhibits the minimum density of 4.86 g/cm3 and permittivity of 9.70 under the spraying power of 55 kW. The current work highlights the feasibility of Y2O3 as a low-dielectric inorganic adhesive in the field of electromagnetic wave applications.
This is a preview of subscription content, access via your institution.








References
- 1.
T. Hou, B. Wang, M. Ma, A. Feng, Z. Huang, Y. Zhang, Z. Jia, G. Tan, H. Cao, and G. Wu, Preparation of Two-Dimensional Titanium Carbide (Ti3C2Tx) and NiCo2O4 Composites to Achieve Excellent Microwave Absorption Properties, Compos. B Eng., 2020, 180, p 107577
- 2.
M. Qin, D. Lan, G. Wu, X. Qiao, and H. Wu, Sodium Citrate Assisted Hydrothermal Synthesis of Nickel Cobaltate Absorbers with Tunable Morphology and Complex Dielectric Parameters Toward Efficient Electromagnetic Wave Absorption, Appl. Surf. Sci., 2020, 504, p 144480
- 3.
X. Wang, F. Pan, Z. Xiang, Q. Zeng, K. Pei, R. Che, and W. Lu, Magnetic Vortex Core-Shell Fe3O4@C Nanorings with Enhanced Microwave Absorption Performance, Carbon, 2020, 157, p 130-139
- 4.
Y.-T. Liu, K.W. Leung, and N. Yang, Compact Absorptive Filtering Patch Antenna, IEEE Trans. Antennas Propag., 2020, 68(2), p 633-642
- 5.
J. Kim, S. Lee, and C. Kim, Comparison Study on the Effect of Carbon Nano Materials for Single-Layer Microwave Absorbers in X-Band, Compos. Sci. Technol., 2008, 68(14), p 2909-2916
- 6.
A. Kazemzade, Nonmagnetic Ultrawideband Absorber with Optimal Thickness, IEEE Trans. Antennas Propag., 2011, 59(1), p 135-140
- 7.
J. Zhou, J. He, G. Li, T. Wang, D. Sun, X. Ding, J. Zhao, and S. Wu, Direct Incorporation of Magnetic Constituents within Ordered Mesoporous Carbon-Silica Nanocomposites for Highly Efficient Electromagnetic Wave Absorbers, J. Phys. Chem. C, 2010, 114(17), p 7611-7617
- 8.
G. Wang, Z. Gao, S. Tang, C. Chen, F. Duan, S. Zhao, S. Lin, Y. Feng, L. Zhou, and Y. Qin, Microwave Absorption Properties of Carbon Nanocoils Coated with Highly Controlled Magnetic Materials by Atomic Layer Deposition, ACS Nano, 2012, 6(12), p 11009-11017
- 9.
K. Park, S. Lee, C. Kim, and J. Han, Fabrication and Electromagnetic Characteristics of Electromagnetic Wave Absorbing Sandwich Structures, Compos. Sci. Technol., 2006, 66(3–4), p 576-584
- 10.
M.-S. Cao, W.-L. Song, Z.-L. Hou, B. Wen, and J. Yuan, The Effects of Temperature and Frequency on the Dielectric Properties, Electromagnetic Interference Shielding and Microwave-Absorption of Short Carbon Fiber/Silica Composites, Carbon, 2010, 48(3), p 788-796
- 11.
W. Liu, Q. Shao, G. Ji, X. Liang, Y. Cheng, B. Quan, and Y. Du, Metal-Organic-Frameworks Derived Porous Carbon-Wrapped Ni Composites with Optimized Impedance Matching as Excellent Lightweight Electromagnetic Wave Absorber, Chem. Eng. J., 2017, 313, p 734-744
- 12.
H. Hekmatara, M. Seifi, K. Forooraghi, and S. Mirzaee, Synthesis and Microwave Absorption Characterization of SiO2 Coated Fe3O4-MWCNT Composites, Phys. Chem. Chem. Phys., 2014, 16(43), p 24069-24075
- 13.
W. Feng, Y. Wang, J. Chen, L. Wang, L. Guo, J. Ouyang, D. Jia, and Y. Zhou, Reduced Graphene Oxide Decorated with In Situ Growing ZnO Nanocrystals: Facile Synthesis and Enhanced Microwave Absorption Properties, Carbon, 2016, 108, p 52-60
- 14.
S. Wang, N. Xiao, Y. Zhou, Z. Ling, M. Li, and J. Qiu, Lightweight Carbon Foam from Coal Liquefaction Residue with Broad-Band Microwave Absorbing Capability, Carbon, 2016, 105, p 224-226
- 15.
R. Qiang, Y. Du, Y. Wang, N. Wang, C. Tian, J. Ma, P. Xu, and X. Han, Rational Design of Yolk-Shell C@C Microspheres for the Effective Enhancement in Microwave Absorption, Carbon, 2016, 98, p 599-606
- 16.
S.R. Podowitz, R. Gaume, and R.S. Feigelson, Effect of Europium Concentration on Densification of Transparent Eu:Y2O3 Scintillator Ceramics Using Hot Pressing, J. Am. Ceram. Soc., 2010, 93(1), p 82-88
- 17.
J. Zhang, L. An, M. Liu, S. Shimai, and S. Wang, Sintering of Yb3+:Y2O3 Transparent Ceramics in Hydrogen Atmosphere, J. Eur. Ceram. Soc., 2009, 29(2), p 305-309
- 18.
X. Hou, S. Zhou, T. Jia, H. Lin, and H. Teng, Investigation of Up-Conversion Luminescence Properties of RE/Yb Co-Doped Y2O3 Transparent Ceramic (RE = Er, Ho, Pr, and Tm), Phys. B, 2011, 406(20), p 3931-3937
- 19.
X. Zhang, G. Fan, X. Wang, W. Lei, L. Fei, and W. Lu, Effects of Sintering Parameters and Nd Doping on the Microwave Dielectric Properties of Y2O3 Ceramics, Ceram. Int., 2016, 42(7), p 7962-7967
- 20.
X. Zhang, Y.-W. Wang, W.-W. Sun, Y. Yang, C. Zhang, Y.-D. Ma, Y.-H. Cui, C.-C. Zhao, L. Wang, Y.-C. Dong, D.-R. Yan, and Y. Wang, Microstructure and Properties of Al2O3-ZrO2-Y2O3 Composite Coatings Prepared by Plasma Spraying, J. Therm. Spray Technol., 2020, 29(5), p 967-978
- 21.
C.-C. Wang, K.-Z. Li, D.-Y. He, and X.-H. Shi, Oxidation Behavior and mechanism of MoSi2-Y2O3 Composite Coating Fabricated by Supersonic Atmospheric Plasma Spraying, Appl. Surf. Sci., 2020, 506, p 144776
- 22.
S.W. Rukhande and W.S. Rathod, An Isothermal Oxidation Behaviour of Atmospheric Plasma and High-Velocity Oxy-Fuel Sprayed Nickel Based Coating, Ceram. Int., 2020, 46(11), p 18498-18506
- 23.
M. Shi, Z. Xue, Z. Zhang, X. Ji, E. Byon, and S. Zhang, Effect of Spraying Powder Characteristics on Mechanical and Thermal Shock Properties of Plasma-Sprayed YSZ Thermal Barrier Coating, Surf. Coat. Technol., 2020, 395, p 125913
- 24.
Y.-C. Liu, G.-S. Lin, Y.-T. Lee, T.-C. Huang, T.-W. Chang, Y.-W. Chen, B.-S. Lee, and K.-L. Tung, Microstructures and Cell Reaction of Porous Hydroxyapatite Coatings on Titanium Discs Using a Novel Vapour-Induced Pore-Forming Atmospheric Plasma Spraying, Surf. Coat. Technol., 2020, 393, p 125837
- 25.
Q. Li, J. Hu, J. Xie, X. Wang, C. Yu, S. Jiang, Z. Liu, X. Jiang, C. Sun, E. Li, and L. Deng, Effect of Spray Process on Dielectric Properties of APS-Deposited CaO-B2O3-SiO2 Glass-Ceramic Coatings, J. Eur. Ceram. Soc., 2020, 40(13), p 4527-4535
- 26.
F.L. Laksmana, L.J. Van Vliet, P.J. Hartman Kok, H. Vromans, H.W. Frijlink, and K. Van der Voort Maarschalk, Quantitative Image Analysis for Evaluating the Coating Thickness and Pore Distribution in Coated Small Particles, Pharm. Res., 2009, 26(4), p 965-976
- 27.
P. Ctibor, R. Lechnerová, and V. Beneš, Quantitative Analysis of Pores of Two Types in a Plasma-Sprayed Coating, Mater. Charact., 2006, 56(4–5), p 297-304
- 28.
D. Zhao, F. Luo, W. Zhou, and D. Zhu, Effect of Critical Plasma Spray Parameter on Complex Permittivity and Microstructure by Plasma Spraying Cr/Al2O3 Coatings, Appl. Surf. Sci., 2013, 264, p 545-551
- 29.
B. Venkateshwarlu, M.T. Basha, and A. Srikanth, Influence of Critical Plasma Spray Parameter on Microstructural and Tribological Characteristics of Nanostructured Tungsten Carbide-Cobalt Coatings, Proc. Manuf., 2019, 30, p 339-346
- 30.
B. Venkateshwarlu and J. Thottathil Varghese, Effect of Critical Plasma Spray Parameter on Characteristics of Nanostructured Alumina-Titania Coatings, Mater. Today Proc., 2020, 22, p 3364-3371
- 31.
S.T. Aruna, N. Balaji, J. Shedthi, and V.K.W. Grips, Effect of Critical Plasma Spray Parameters on the Microstructure, Microhardness and Wear and Corrosion Resistance of Plasma Sprayed Alumina Coatings, Surf. Coat. Technol., 2012, 208, p 92-100
- 32.
Q. Hou, X. Ma, R. Lu, W. Wang, P. Wang, and Z. Huang, Microstructure and Laser Irradiation Characteristics of TiC-Free and TiC-Doped Tungsten-Based Coatings Prepared by Supersonic Atmospheric Plasma Spraying, Surf. Coat. Technol., 2019, 358, p 796-805
- 33.
F. Wang, G.-N. Luo, J. Huang, and Y. Liu, Properties Improvement of Atmospheric Plasma Sprayed Tungsten Coating by Annealing, Surf. Coat. Technol., 2019, 358, p 276-281
- 34.
X. Qiao, Y.M. Wang, W.X. Weng, B.L. Liu, and Q. Li, Influence of Pores on Mechanical Properties of Plasma Sprayed Coatings: Case Study of YSZ Thermal Barrier Coatings, Ceram. Int., 2018, 44(17), p 21564-21577
- 35.
H.-K. Seok, E.Y. Choi, P.-R. Cha, M.-C. Son, and B.L. Choi, Characterization of Plasma-Sprayed Y2O3 Coating and Investigation of Its Visual Aspect Change, Surf. Coat. Technol., 2011, 205(11), p 3341-3346
- 36.
Y.-Y. Zhou, G.-Z. Ma, H.-D. Wang, G.-L. Li, S.-Y. Chen, H.-J. Wang, and L. Ming, Fabrication and Characterization of Supersonic Plasma Sprayed Fe-Based Amorphous Metallic Coatings, Mater. Des., 2016, 110, p 332-339
- 37.
G. Mauer, R. Vaßen, and D. Stöver, Atmospheric Plasma Spraying of Yttria-Stabilized Zirconia Coatings With Specific Porosity, Surf. Coat. Technol., 2009, 204(1–2), p 172-179
- 38.
X. Luo, L. Ren, Y. Xia, Y. Hu, W. Gong, M. Cai, and H. Zhou, Microstructure, Sinterability and Properties of CaO-B2O3-SiO2 Glass/Al2O3 Composites for LTCC Application, Ceram. Int., 2017, 43(9), p 6791-6795
- 39.
Y. Liu, Y. Li, F. Luo, X. Su, J. Xu, J. Wang, Y. Qu, and Y. Shi, Mechanical, Dielectric and Microwave Absorption Properties of TiC/Cordierite Composite Ceramics, J. Mater. Sci. Mater. Electron., 2017, 28(16), p 12115-12121
- 40.
N. Wang, M.Y. Zhao, W. Li, and Z.W. Yin, Effects of Y2O3 on Sintering Behavior and Microwave Dielectric Properties of BiNbO4 Ceramics, Jpn. J. Appl. Phys., 2003, 42, p 3514-3518
- 41.
P. Fu, W. Lu, W. Lei, Y. Xu, X. Wang, and J. Wu, Transparent Polycrystalline MgAl2O4 Ceramic Fabricated by Spark Plasma Sintering: Microwave Dielectric and Optical Properties, Ceram. Int., 2013, 39(3), p 2481-2487
Acknowledgments
This work was supported by the National Natural Science Foundation of China (Grant No. 51702041) and the Fundamental Research Funds for the Central Universities (Grant No. ZYGX2019J017).
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Production Notes: Credit Line: This article is an invited paper selected from presentations at the 10th Asian Thermal Spray Conference (ATSC 2020) and has been expanded from the original presentation. ATSC 2020 was held in Ningbo, China, from November 1–3, 2020, and was organized by the Asian Thermal Spray Society with Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences as the Host Organizer.
Rights and permissions
About this article
Cite this article
Li, Q., Hu, J., Xie, J. et al. Influence of High-Enthalpy Atmospheric Plasma Spraying Process Parameters on Microwave Dielectric Properties of Y2O3 Coatings. J Therm Spray Tech (2021). https://doi.org/10.1007/s11666-020-01144-0
Received:
Revised:
Accepted:
Published:
Keywords
- electromagnetic wave absorption
- high-enthalpy atmospheric plasma spraying
- low-dielectric
- thermal spray coating
- Y2O3 ceramics