Influence of High-Enthalpy Atmospheric Plasma Spraying Process Parameters on Microwave Dielectric Properties of Y2O3 Coatings


The low-dielectric inorganic adhesive is an important component of electromagnetic wave absorption coatings due to impedance matching with the atmospheric environment. Herein, high-enthalpy atmospheric plasma spraying (HE-APS) equipment is utilized to prepare Y2O3 ceramic coatings, and the influence of spraying power on dielectric and physical properties of Y2O3 ceramic coatings is systematically investigated. The surface and cross-sectional SEM images of Y2O3 coating show that the overall coating morphology is smooth and less porous at high spraying power. This result is consistent with the trend of coating density and porosity. The XRD pattern demonstrates that the Y2O3 coating possesses a stable cubic structure. The experimental results reveal that the dielectric properties of Y2O3 coating are mainly affected by the porosity. According to the dielectric mixing rule of composite materials, Y2O3 coating exhibits the minimum density of 4.86 g/cm3 and permittivity of 9.70 under the spraying power of 55 kW. The current work highlights the feasibility of Y2O3 as a low-dielectric inorganic adhesive in the field of electromagnetic wave applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    T. Hou, B. Wang, M. Ma, A. Feng, Z. Huang, Y. Zhang, Z. Jia, G. Tan, H. Cao, and G. Wu, Preparation of Two-Dimensional Titanium Carbide (Ti3C2Tx) and NiCo2O4 Composites to Achieve Excellent Microwave Absorption Properties, Compos. B Eng., 2020, 180, p 107577

    CAS  Article  Google Scholar 

  2. 2.

    M. Qin, D. Lan, G. Wu, X. Qiao, and H. Wu, Sodium Citrate Assisted Hydrothermal Synthesis of Nickel Cobaltate Absorbers with Tunable Morphology and Complex Dielectric Parameters Toward Efficient Electromagnetic Wave Absorption, Appl. Surf. Sci., 2020, 504, p 144480

    CAS  Article  Google Scholar 

  3. 3.

    X. Wang, F. Pan, Z. Xiang, Q. Zeng, K. Pei, R. Che, and W. Lu, Magnetic Vortex Core-Shell Fe3O4@C Nanorings with Enhanced Microwave Absorption Performance, Carbon, 2020, 157, p 130-139

    CAS  Article  Google Scholar 

  4. 4.

    Y.-T. Liu, K.W. Leung, and N. Yang, Compact Absorptive Filtering Patch Antenna, IEEE Trans. Antennas Propag., 2020, 68(2), p 633-642

    Article  Google Scholar 

  5. 5.

    J. Kim, S. Lee, and C. Kim, Comparison Study on the Effect of Carbon Nano Materials for Single-Layer Microwave Absorbers in X-Band, Compos. Sci. Technol., 2008, 68(14), p 2909-2916

    CAS  Article  Google Scholar 

  6. 6.

    A. Kazemzade, Nonmagnetic Ultrawideband Absorber with Optimal Thickness, IEEE Trans. Antennas Propag., 2011, 59(1), p 135-140

    Article  Google Scholar 

  7. 7.

    J. Zhou, J. He, G. Li, T. Wang, D. Sun, X. Ding, J. Zhao, and S. Wu, Direct Incorporation of Magnetic Constituents within Ordered Mesoporous Carbon-Silica Nanocomposites for Highly Efficient Electromagnetic Wave Absorbers, J. Phys. Chem. C, 2010, 114(17), p 7611-7617

    CAS  Article  Google Scholar 

  8. 8.

    G. Wang, Z. Gao, S. Tang, C. Chen, F. Duan, S. Zhao, S. Lin, Y. Feng, L. Zhou, and Y. Qin, Microwave Absorption Properties of Carbon Nanocoils Coated with Highly Controlled Magnetic Materials by Atomic Layer Deposition, ACS Nano, 2012, 6(12), p 11009-11017

    CAS  Article  Google Scholar 

  9. 9.

    K. Park, S. Lee, C. Kim, and J. Han, Fabrication and Electromagnetic Characteristics of Electromagnetic Wave Absorbing Sandwich Structures, Compos. Sci. Technol., 2006, 66(3–4), p 576-584

    CAS  Article  Google Scholar 

  10. 10.

    M.-S. Cao, W.-L. Song, Z.-L. Hou, B. Wen, and J. Yuan, The Effects of Temperature and Frequency on the Dielectric Properties, Electromagnetic Interference Shielding and Microwave-Absorption of Short Carbon Fiber/Silica Composites, Carbon, 2010, 48(3), p 788-796

    CAS  Article  Google Scholar 

  11. 11.

    W. Liu, Q. Shao, G. Ji, X. Liang, Y. Cheng, B. Quan, and Y. Du, Metal-Organic-Frameworks Derived Porous Carbon-Wrapped Ni Composites with Optimized Impedance Matching as Excellent Lightweight Electromagnetic Wave Absorber, Chem. Eng. J., 2017, 313, p 734-744

    CAS  Article  Google Scholar 

  12. 12.

    H. Hekmatara, M. Seifi, K. Forooraghi, and S. Mirzaee, Synthesis and Microwave Absorption Characterization of SiO2 Coated Fe3O4-MWCNT Composites, Phys. Chem. Chem. Phys., 2014, 16(43), p 24069-24075

    CAS  Article  Google Scholar 

  13. 13.

    W. Feng, Y. Wang, J. Chen, L. Wang, L. Guo, J. Ouyang, D. Jia, and Y. Zhou, Reduced Graphene Oxide Decorated with In Situ Growing ZnO Nanocrystals: Facile Synthesis and Enhanced Microwave Absorption Properties, Carbon, 2016, 108, p 52-60

    CAS  Article  Google Scholar 

  14. 14.

    S. Wang, N. Xiao, Y. Zhou, Z. Ling, M. Li, and J. Qiu, Lightweight Carbon Foam from Coal Liquefaction Residue with Broad-Band Microwave Absorbing Capability, Carbon, 2016, 105, p 224-226

    Article  CAS  Google Scholar 

  15. 15.

    R. Qiang, Y. Du, Y. Wang, N. Wang, C. Tian, J. Ma, P. Xu, and X. Han, Rational Design of Yolk-Shell C@C Microspheres for the Effective Enhancement in Microwave Absorption, Carbon, 2016, 98, p 599-606

    CAS  Article  Google Scholar 

  16. 16.

    S.R. Podowitz, R. Gaume, and R.S. Feigelson, Effect of Europium Concentration on Densification of Transparent Eu:Y2O3 Scintillator Ceramics Using Hot Pressing, J. Am. Ceram. Soc., 2010, 93(1), p 82-88

    CAS  Article  Google Scholar 

  17. 17.

    J. Zhang, L. An, M. Liu, S. Shimai, and S. Wang, Sintering of Yb3+:Y2O3 Transparent Ceramics in Hydrogen Atmosphere, J. Eur. Ceram. Soc., 2009, 29(2), p 305-309

    CAS  Article  Google Scholar 

  18. 18.

    X. Hou, S. Zhou, T. Jia, H. Lin, and H. Teng, Investigation of Up-Conversion Luminescence Properties of RE/Yb Co-Doped Y2O3 Transparent Ceramic (RE = Er, Ho, Pr, and Tm), Phys. B, 2011, 406(20), p 3931-3937

    CAS  Article  Google Scholar 

  19. 19.

    X. Zhang, G. Fan, X. Wang, W. Lei, L. Fei, and W. Lu, Effects of Sintering Parameters and Nd Doping on the Microwave Dielectric Properties of Y2O3 Ceramics, Ceram. Int., 2016, 42(7), p 7962-7967

    CAS  Article  Google Scholar 

  20. 20.

    X. Zhang, Y.-W. Wang, W.-W. Sun, Y. Yang, C. Zhang, Y.-D. Ma, Y.-H. Cui, C.-C. Zhao, L. Wang, Y.-C. Dong, D.-R. Yan, and Y. Wang, Microstructure and Properties of Al2O3-ZrO2-Y2O3 Composite Coatings Prepared by Plasma Spraying, J. Therm. Spray Technol., 2020, 29(5), p 967-978

    CAS  Article  Google Scholar 

  21. 21.

    C.-C. Wang, K.-Z. Li, D.-Y. He, and X.-H. Shi, Oxidation Behavior and mechanism of MoSi2-Y2O3 Composite Coating Fabricated by Supersonic Atmospheric Plasma Spraying, Appl. Surf. Sci., 2020, 506, p 144776

    CAS  Article  Google Scholar 

  22. 22.

    S.W. Rukhande and W.S. Rathod, An Isothermal Oxidation Behaviour of Atmospheric Plasma and High-Velocity Oxy-Fuel Sprayed Nickel Based Coating, Ceram. Int., 2020, 46(11), p 18498-18506

    CAS  Article  Google Scholar 

  23. 23.

    M. Shi, Z. Xue, Z. Zhang, X. Ji, E. Byon, and S. Zhang, Effect of Spraying Powder Characteristics on Mechanical and Thermal Shock Properties of Plasma-Sprayed YSZ Thermal Barrier Coating, Surf. Coat. Technol., 2020, 395, p 125913

    CAS  Article  Google Scholar 

  24. 24.

    Y.-C. Liu, G.-S. Lin, Y.-T. Lee, T.-C. Huang, T.-W. Chang, Y.-W. Chen, B.-S. Lee, and K.-L. Tung, Microstructures and Cell Reaction of Porous Hydroxyapatite Coatings on Titanium Discs Using a Novel Vapour-Induced Pore-Forming Atmospheric Plasma Spraying, Surf. Coat. Technol., 2020, 393, p 125837

    CAS  Article  Google Scholar 

  25. 25.

    Q. Li, J. Hu, J. Xie, X. Wang, C. Yu, S. Jiang, Z. Liu, X. Jiang, C. Sun, E. Li, and L. Deng, Effect of Spray Process on Dielectric Properties of APS-Deposited CaO-B2O3-SiO2 Glass-Ceramic Coatings, J. Eur. Ceram. Soc., 2020, 40(13), p 4527-4535

    CAS  Article  Google Scholar 

  26. 26.

    F.L. Laksmana, L.J. Van Vliet, P.J. Hartman Kok, H. Vromans, H.W. Frijlink, and K. Van der Voort Maarschalk, Quantitative Image Analysis for Evaluating the Coating Thickness and Pore Distribution in Coated Small Particles, Pharm. Res., 2009, 26(4), p 965-976

    CAS  Article  Google Scholar 

  27. 27.

    P. Ctibor, R. Lechnerová, and V. Beneš, Quantitative Analysis of Pores of Two Types in a Plasma-Sprayed Coating, Mater. Charact., 2006, 56(4–5), p 297-304

    CAS  Article  Google Scholar 

  28. 28.

    D. Zhao, F. Luo, W. Zhou, and D. Zhu, Effect of Critical Plasma Spray Parameter on Complex Permittivity and Microstructure by Plasma Spraying Cr/Al2O3 Coatings, Appl. Surf. Sci., 2013, 264, p 545-551

    CAS  Article  Google Scholar 

  29. 29.

    B. Venkateshwarlu, M.T. Basha, and A. Srikanth, Influence of Critical Plasma Spray Parameter on Microstructural and Tribological Characteristics of Nanostructured Tungsten Carbide-Cobalt Coatings, Proc. Manuf., 2019, 30, p 339-346

    Google Scholar 

  30. 30.

    B. Venkateshwarlu and J. Thottathil Varghese, Effect of Critical Plasma Spray Parameter on Characteristics of Nanostructured Alumina-Titania Coatings, Mater. Today Proc., 2020, 22, p 3364-3371

    CAS  Article  Google Scholar 

  31. 31.

    S.T. Aruna, N. Balaji, J. Shedthi, and V.K.W. Grips, Effect of Critical Plasma Spray Parameters on the Microstructure, Microhardness and Wear and Corrosion Resistance of Plasma Sprayed Alumina Coatings, Surf. Coat. Technol., 2012, 208, p 92-100

    CAS  Article  Google Scholar 

  32. 32.

    Q. Hou, X. Ma, R. Lu, W. Wang, P. Wang, and Z. Huang, Microstructure and Laser Irradiation Characteristics of TiC-Free and TiC-Doped Tungsten-Based Coatings Prepared by Supersonic Atmospheric Plasma Spraying, Surf. Coat. Technol., 2019, 358, p 796-805

    CAS  Article  Google Scholar 

  33. 33.

    F. Wang, G.-N. Luo, J. Huang, and Y. Liu, Properties Improvement of Atmospheric Plasma Sprayed Tungsten Coating by Annealing, Surf. Coat. Technol., 2019, 358, p 276-281

    CAS  Article  Google Scholar 

  34. 34.

    X. Qiao, Y.M. Wang, W.X. Weng, B.L. Liu, and Q. Li, Influence of Pores on Mechanical Properties of Plasma Sprayed Coatings: Case Study of YSZ Thermal Barrier Coatings, Ceram. Int., 2018, 44(17), p 21564-21577

    CAS  Article  Google Scholar 

  35. 35.

    H.-K. Seok, E.Y. Choi, P.-R. Cha, M.-C. Son, and B.L. Choi, Characterization of Plasma-Sprayed Y2O3 Coating and Investigation of Its Visual Aspect Change, Surf. Coat. Technol., 2011, 205(11), p 3341-3346

    CAS  Article  Google Scholar 

  36. 36.

    Y.-Y. Zhou, G.-Z. Ma, H.-D. Wang, G.-L. Li, S.-Y. Chen, H.-J. Wang, and L. Ming, Fabrication and Characterization of Supersonic Plasma Sprayed Fe-Based Amorphous Metallic Coatings, Mater. Des., 2016, 110, p 332-339

    CAS  Article  Google Scholar 

  37. 37.

    G. Mauer, R. Vaßen, and D. Stöver, Atmospheric Plasma Spraying of Yttria-Stabilized Zirconia Coatings With Specific Porosity, Surf. Coat. Technol., 2009, 204(1–2), p 172-179

    CAS  Article  Google Scholar 

  38. 38.

    X. Luo, L. Ren, Y. Xia, Y. Hu, W. Gong, M. Cai, and H. Zhou, Microstructure, Sinterability and Properties of CaO-B2O3-SiO2 Glass/Al2O3 Composites for LTCC Application, Ceram. Int., 2017, 43(9), p 6791-6795

    CAS  Article  Google Scholar 

  39. 39.

    Y. Liu, Y. Li, F. Luo, X. Su, J. Xu, J. Wang, Y. Qu, and Y. Shi, Mechanical, Dielectric and Microwave Absorption Properties of TiC/Cordierite Composite Ceramics, J. Mater. Sci. Mater. Electron., 2017, 28(16), p 12115-12121

    CAS  Article  Google Scholar 

  40. 40.

    N. Wang, M.Y. Zhao, W. Li, and Z.W. Yin, Effects of Y2O3 on Sintering Behavior and Microwave Dielectric Properties of BiNbO4 Ceramics, Jpn. J. Appl. Phys., 2003, 42, p 3514-3518

    CAS  Article  Google Scholar 

  41. 41.

    P. Fu, W. Lu, W. Lei, Y. Xu, X. Wang, and J. Wu, Transparent Polycrystalline MgAl2O4 Ceramic Fabricated by Spark Plasma Sintering: Microwave Dielectric and Optical Properties, Ceram. Int., 2013, 39(3), p 2481-2487

    CAS  Article  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (Grant No. 51702041) and the Fundamental Research Funds for the Central Universities (Grant No. ZYGX2019J017).

Author information



Corresponding author

Correspondence to Xin Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Production Notes: Credit Line: This article is an invited paper selected from presentations at the 10th Asian Thermal Spray Conference (ATSC 2020) and has been expanded from the original presentation. ATSC 2020 was held in Ningbo, China, from November 1–3, 2020, and was organized by the Asian Thermal Spray Society with Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences as the Host Organizer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Hu, J., Xie, J. et al. Influence of High-Enthalpy Atmospheric Plasma Spraying Process Parameters on Microwave Dielectric Properties of Y2O3 Coatings. J Therm Spray Tech (2021).

Download citation


  • electromagnetic wave absorption
  • high-enthalpy atmospheric plasma spraying
  • low-dielectric
  • thermal spray coating
  • Y2O3 ceramics