Skip to main content

Advertisement

Log in

Microstructure and Sliding Wear Behaviors of Plasma-Sprayed Fe-Based Amorphous Coatings in 3.5 wt.% NaCl Solution

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

This paper explored the evolutions of microstructure, fracture toughness and sliding wear behaviors in 3.5 wt.% NaCl solution of Fe43Cr16Mo16(C, B, P)25 amorphous coatings prepared by air plasma spraying process with various powers. The results showed that the as-sprayed coatings display full glassy nature and high thermal stability with glass transition temperature (Tg) and onset crystallization temperature (Tx) of 595 and 672 °C, respectively. The coatings become denser as a function of spraying powers. At a lower power of 28 kW, the average hardness and fracture toughness of the coating are 13.1 GPa and 2.62 MPa m1/2, respectively. At a higher power of 42 kW, they are gradually increasing to 22.1 GPa and 4.25 MPa m1/2, respectively. The spraying power also has a remarkable influence on sliding wear behaviors of the coating under corrosive environment. The wear rate in a 3.5 wt.% NaCl solution of the coating deposited with 42 kW is about 1.6 and 4.2 times lower than that of the coating deposited with 28 kW and EQ 70 marine steel, respectively. The microdefects and corrosion phenomena responsible for the variations of the wear rate of the coatings under corrosive environment are discussed in details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. X.C. Zhang, B.S. Xu, F.Z. Xuan, H.D. Wang, and Y.X. Wu, Microstructural and Porosity Variations in the Plasma-Sprayed Ni-Alloy Coatings Prepared at Different Spraying Powers, J. Alloys Compd., 2009, 473, p 145-151

    Article  Google Scholar 

  2. L. Marcinauskas, Ž. Kavaliauskas, and R. Kėželis, Formation of Carbon Composite Coatings by Plasma Spraying, Vacuum, 2015, 122, p 326-331

    Article  Google Scholar 

  3. M. Bitzer, N. Rauhut, G. Mauer, M. Bram, R. Vaßen, H. Buchkremer, D. Stöver, and M. Pohl, Cavitation-Resistant NiTi Coatings Produced by Low-Pressure Plasma Spraying (LPPS), Wear, 2015, 328–329, p 369-377

    Article  Google Scholar 

  4. J. Sun, Q. Fu, R. Yuan, K. Dong, and J. Guo, Corrosion and Thermal Cycling Behavior of Plasma Sprayed Thermal Barrier Coatings on Die Steel, Mater. Des., 2017, 114, p 537-545

    Article  Google Scholar 

  5. K.H. Kim, J.H. Kim, K.W. Hong, J.Y. Park, and C.B. Lee, Application of High-Temperature Ceramic Plasma-Spray Coatings for a Reusable Melting Crucible, Surf. Coat. Technol., 2017, 326, p 429-435

    Article  Google Scholar 

  6. R.S. Pillai, M. Frasnelli, and V.M. Sglavo, HA/β-TCP Plasma Sprayed Coatings on Ti Substrate for Biomedical Applications, Ceram. Int., 2017, https://doi.org/10.1016/j.ceramint.2017.08.113

    Google Scholar 

  7. M. Osadnik, A. Wrona, M. Lis, M. Kamińsha, K. Bilewska, M. Czepelak, K. Czechowska, G. Moskal, and G. Więcław, Plasma-Sprayed Mo-Re Coatings for Glass Industry Applications, Surf. Coat. Technol., 2017, 318, p 349-354

    Article  Google Scholar 

  8. M. Moss, Dispersion Hardening in AI-V by Plasma Jet Spray Quenching, Acta Metall., 1968, 116, p 321-326

    Article  Google Scholar 

  9. S. Sampath and H. Herman, Rapid Solidification and Microstructure Development During Plasma Spray Deposition, J. Therm. Spray Technol., 1996, 5, p 445-456

    Article  Google Scholar 

  10. J.B. Cheng, X.B. Liang, and B.S. Xu, Effects of Crystallization on the Corrosion Resistance of Arc-Sprayed FeBSiNb Coatings, J. Therm. Spray Technol., 2014, 23, p 373-379

    Article  Google Scholar 

  11. J. Cheng, D. Liu, X. Liang, and Y. Chen, Wear Behaviors of Arc-Sprayed FeBSiNb Amorphous Coatings, Tribol. Lett., 2015, 60, p 22

    Article  Google Scholar 

  12. S.S. Joshi, S. Katakam, H.S. Arora, S. Mukherjee, and N.B. Dahotre, Amorphous Coatings and Surfaces on Structural Materials, Crit. Rev. Solid State Mater. Sci., 2015, 41, p 1-46

    Article  Google Scholar 

  13. A. Kobayashi, S. Yano, H. Kimura, and A. Inoue, Fe-Based Amorphous Coatings Produced by Smart Plasma Spraying process, Mater. Sci. Eng. B, 2008, 148, p 110-113

    Article  Google Scholar 

  14. Y. Huang, Y. Guo, H. Fan, and J. Shen, Synthesis of Fe–Cr–Mo–C–B Amorphous Coating with High Corrosion Resistance, Mater. Lett., 2012, 89, p 229-232

    Article  Google Scholar 

  15. Y. An, G. Hou, J. Chen, X. Zhao, G. Liu, H. Zhou, and J. Chen, Microstructure and Tribological Properties of Iron-Based Amorphous Coatings Prepared by Atmospheric Plasma Spraying, Vacuum, 2014, 107, p 132-140

    Article  Google Scholar 

  16. Y. Zhou, G. Ma, H. Wang, G. Li, S. Chen, H. Jun, and M. Liu, Fabrication and Characterization of Supersonic Plasma Sprayed Fe-Based Amorphous Metallic Coatings, Mater. Des., 2016, 110, p 332-339

    Article  Google Scholar 

  17. H. Zhang, Y. Xie, L. Huang, S. Huang, X. Zheng, and G. Chen, Effect of Feedstock Particle Sizes on Wear Resistance of Plasma Sprayed Fe-Based Amorphous Coatings, Surf. Coat. Technol., 2014, 258, p 495-502

    Article  Google Scholar 

  18. Z.B. Zheng, Y.G. Zheng, W.H. Sun, and J.Q. Wang, Erosion–Corrosion of HVOF-Sprayed Fe-Based Amorphous Metallic Coating Under Impingement by a Sand-Containing NaCl Solution, Corr. Sci., 2013, 76, p 337-347

    Article  Google Scholar 

  19. M. Yasir, C. Zhang, W. Wang, P. Xu, and L. Liu, Wear Behaviors of Fe-Based Amorphous Composite Coatings Reinforced by Al2O3 Particles in Air and in NaCl Solution, Mater. Des., 2015, 88, p 207-213

    Article  Google Scholar 

  20. S.J. Pang, T. Zhang, K. Asami, and A. Inoue, Synthesis of Fe–Cr–Mo–C–B–P Bulk Metallic Glasses with High Corrosion Resistance, Acta Mater., 2002, 50, p 489-497

    Article  Google Scholar 

  21. D.B. Marshall, T. Noma, and A.G. Evans, A Simple Method for Determining Elastic-Modulus-to-Hardness Ratios Using Knoop indentation Measurements, J. Am. Ceram. Soc., 1982, 65, p C175-C176

    Article  Google Scholar 

  22. S. Zhang and X. Zhang, Toughness Evaluation of Hard Coatings and Thin Films, Thin Solid Films, 2012, 520, p 2375-2389

    Article  Google Scholar 

  23. H. Kenneth and M. Allan, Coatings Tribology: Properties, Mechanisms, Techniques and Applications in Surface Engineering, 2nd ed., Elsevier, Amsterdam, 2009

    Google Scholar 

  24. S.D. Zhang, W.L. Zhang, S.G. Wang et al., Characterisation of Three-Dimensional Porosity in an Fe-Based Amorphous Coating and Its Correlation with Corrosion Behaviour, Corr. Sci., 2015, 93, p 211-221

    Article  Google Scholar 

  25. W. Liu, Q. Li, and M. Li, Corrosion Behaviour of Hot-Dip Al–Zn–Si and Al–Zn–Si–3Mg Coatings in NaCl Solution, Corr. Sci., 2017, 121, p 72-83

    Article  Google Scholar 

  26. S. Khireche, D. Boughrara, A. Kadri et al., Corrosion Mechanism of Al, Al–Zn and Al–Zn–Sn alloys in 3 wt.% NaCl Solution, Corr. Sci., 2014, 87, p 504-516

    Article  Google Scholar 

  27. H. Wu, H. Li, Q. Li, Q. Fu, C. Ma, D. Yao, Y. Wang, C. Sun, J. Wei, and Z. Han, Effect of Spraying Power on Microstructure and Bonding Strength of MoSi2-Based Coatings Prepared by Supersonic Plasma Spraying, Appl. Surf. Sci., 2011, 257, p 5566-5570

    Article  Google Scholar 

  28. S. Wang, Y. Li, X. Wang, S. Yamaura, and W. Zhang, Glass-Forming Ability, Thermal Properties, and Corrosion Resistance of Fe-Based (Fe, Ni, Mo, Cr)–P–C–B Metallic Glasses, J. Non-Cryst. Solids, 2017, 476, p 75-80

    Article  Google Scholar 

  29. B. Zhang, J. Cheng, and X. Liang, Effects of Cr and Mo Additions on Formation and Mechanical Properties of Arc-Sprayed FeBSiNb-Based Glassy Coatings, J. Non-Cryst. Solids, 2018, 499, p 245-251

    Article  Google Scholar 

  30. M.W. Tan, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami, and K. Hashimoto, The Effect of Molybdenum on the Stability of Passive Films Formed on Amorphous Fe–Cr–Mo–P–C Alloys by Potentiostatic Polarization in deaErated 1 M HCl, Corr. Sci., 1997, 39, p 589-603

    Article  Google Scholar 

  31. L. Zhang, Y. Chen, Y. Feng et al., Electrochemical Characterization of AlTiN, AlCrN and AlCrSiWN Coatings, Int. J. Refract. Metal Hard Mater., 2015, 53, p 68-73

    Article  Google Scholar 

  32. W. Zhao and D. Kong, Effects of Laser Power on Immersion Corrosion and Electrochemical Corrosion Performances of Laser Thermal Sprayed Amorphous AlFeSi Coatings, Appl. Surf. Sci., 2019, 481, p 161-173

    Article  Google Scholar 

  33. S.S.A. Gillani and P. Häussler, Enhancement of Phase Stability by Manganese in Al60−xMnxCu40, J. Non-Cryst. Solids, 2018, 481, p 361-367

    Article  Google Scholar 

  34. A. Fattah-alhosseini and S. Vafaeian, Influence of Grain Refinement on the Electrochemical Behavior of AISI, 430 Ferritic Stainless Steel in an Alkaline Solution, Appl. Surf. Sci., 2016, 360, p 921-928

    Article  Google Scholar 

  35. J. Wu, S.D. Zhang, W.H. Sun et al., Enhanced Corrosion Resistance in Fe-Based Amorphous Coatings Through Eliminating Cr-Depleted Zones, Corr. Sci., 2018, 136, p 161-173

    Article  Google Scholar 

  36. Y. Yang, C. Zhang, Y. Peng et al., Effects of Crystallization on the Corrosion Resistance of Fe-Based Amorphous Coatings, Corr. Sci., 2012, 59, p 10-19

    Article  Google Scholar 

  37. J. Cheng, D. Liu, X. Liang, and Y. Chen, Evolution of Microstructure and Mechanical Properties of In Situ Synthesized TiC–TiB2/CoCrCuFeNi High Entropy Alloy Coatings, Surf. Coat. Technol., 2015, 281, p 109-116

    Article  Google Scholar 

Download references

Acknowledgments

This project is supported by National Natural Science Foundation of China (Grant Number: 51575159), the Key Research and Development plan of Jiangsu Province, China (Grant Number: BE2017065), the Fundamental Research Funds for the Central Universities (Grant Number: 2018B16914), and the Opening Project of Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology (Grant Number: ASMA201801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangbo Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, J., Zhang, Q., Feng, Y. et al. Microstructure and Sliding Wear Behaviors of Plasma-Sprayed Fe-Based Amorphous Coatings in 3.5 wt.% NaCl Solution. J Therm Spray Tech 28, 1049–1059 (2019). https://doi.org/10.1007/s11666-019-00866-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-019-00866-0

Keywords

Navigation