Skip to main content
Log in

Atmospheric Plasma-Sprayed Hydroxyapatite Coatings with (002) Texture

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Hydroxyapatite (HA) coatings are being widely used in biomedical applications owing to their excellent biocompatibility and osteoconductivity. Recent studies have demonstrated that the crystallographic texture plays an important role in improving the chemical stability and mechanical properties of HA coatings. In this study, optimized APS parameter was selected to deposit HA coatings with strong (002) crystallographic texture, high phase purity and enhanced melting state. Cross-sectional SEM images show uniformly distributed columnar grains perpendicular to the coating surface. To study the formation conditions of columnar grains, coatings with distinct microstructure were deposited with different spray parameters. Moreover, HA coatings were deposited on substrates with varying temperatures such as 25, 300 and 600 °C at a long stand-off distance to evaluate the role of the substrate temperature in the formation of columnar grains. The results indicate that completely molten in-flight particles and slow cooling rate are necessary conditions to form a strong crystallographic texture. The present study suggests that the crystalline structure of HA coatings deposited and formed by APS could be well controlled by modifying spray parameters and substrate temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.B. Heimann, Plasma-Sprayed Hydroxylapatite-Based Coatings: Chemical, Mechanical, Microstructural, and Biomedical Properties, J. Therm. Spray Technol., 2016, 25(5), p 827-850

    Article  CAS  Google Scholar 

  2. B. Locardi, U.E. Pazzaglia, C. Gabbi, and B. Profilo, Thermal Behaviour of Hydroxyapatite Intended for Medical Applications, Biomaterials, 1993, 14(6), p 437-441

    Article  CAS  Google Scholar 

  3. Y.C. Yang and C.Y. Yang, Mechanical and Histological Evaluation of a Plasma Sprayed Hydroxyapatite Coating on a Titanium Bond Coat, Ceram. Int., 2016, 39(6), p 6509-6516

    Article  Google Scholar 

  4. R.B. Heimann, Structure, Properties, and Biomedical Performance of Osteoconductive Bioceramic Coatings, Surf. Coat. Technol., 2013, 233, p 27-38

    Article  CAS  Google Scholar 

  5. H.R. Wenk and F. Heidelbach, Crystal Alignment of Carbonated Apatite in Bone and Calcified Tendon: Results from Quantitative Texture Analysis, Bone, 1999, 24(4), p 361-369

    Article  CAS  Google Scholar 

  6. K. Fujisaki, M. Todoh, A. Niida, R. Shibuya, S. Kitami, and S. Tadano, Orientation and Deformation of Mineral Crystals in Tooth Surfaces, J. Mech. Behav. Biomed., 2012, 10, p 176-182

    Article  CAS  Google Scholar 

  7. T. Nakano, K. Kaibara, T. Ishimoto, Y. Tabata, and Y. Umakoshi, Biological Apatite (BAp) Crystallographic Orientation and Texture as a New Index for Assessing the Microstructure and Function of Bone Regenerated by Tissue Engineering, Bone, 2012, 51, p 741-747

    Article  Google Scholar 

  8. Y.M. Wang, X.M. Liu, T.T. Fan, Z. Tan, Z. Zhou, and D.Y. He, In Vitro Evaluation of Hydroxyapatite Coatings with (002) Crystallographic Texture Deposited by Micro-plasma Spraying, Mater. Sci. Eng. C, 2017, 75, p 596-601

    Article  CAS  Google Scholar 

  9. H. Kim, R.P. Camata, S. Chowdhury, and Y.K. Vohra, In Vitro Dissolution and Mechanical Behavior of c-axis Preferentially Oriented Hydroxyapatite Thin Films Fabricated by Pulsed Laser Deposition, Acta Biomater., 2010, 6(8), p 3234-3241

    Article  CAS  Google Scholar 

  10. H. Kim, R.P. Camata, S. Lee, G.S. Rohrer, A.D. Rollett, K.M. Hennessy, S.L. Bellis, and Y.K. Vohra, Calcium Phosphate Bioceramics with Tailored Crystallographic Texture for Controlling Cell Adhesion, Mater. Res. Soc. Symp. Proc., 2006, 925, p 0925-BB02-07

    Article  Google Scholar 

  11. D.Y. Lin and X.X. Wang, Electrodeposition of Hydroxyapatite Coating on CoNiCrMo Substrate in Dilute Solution, Surf. Coat. Technol., 2010, 204, p 3205-3213

    Article  CAS  Google Scholar 

  12. T. Nakano, W. Fujitani, and Y. Umakoshi, Synthesis of Apatite Ceramics with Preferential Crystal Orientation, Mater. Sci. Forum, 2004, 449–452, p 1289-1292

    Article  Google Scholar 

  13. M. Manso, P. Herrero, M. Fernández, M. Langlet, and J.M. Martínez-Duart, Textured Hydroxyapatite Interface onto Biomedical Titanium-Based Coatings, J. Biomed. Mater. Res. A, 2003, 64A(4), p 600-605

    Article  CAS  Google Scholar 

  14. A.A. Ivanova, M.A. Surmeneva, R.A. Surmenev, and D. Depla, Influence of Deposition Conditions on the Composition, Texture and Microstructure of RF-Magnetron Sputter-Deposited Hydroxyapatite Thin Films, Thin Solid Films, 2015, 591, p 368-374

    Article  CAS  Google Scholar 

  15. L. Zhao, K. Bobzin, F. Ernst, J. Zwick, and E. Lugscheider, Study on the Influence of Plasma Spray Processes and Spray Parameters on the Structure and Crystallinity of Hydroxyapatite Coatings, Mater. Werkst., 2006, 37, p 516-520

    Article  CAS  Google Scholar 

  16. Y.M. Wang, T.T. Fan, Z. Zhou, and D.Y. He, Hydroxyapatite Coating with Strong (002) Crystallographic Texture Deposited by Micro-plasma Spraying, Mater. Lett., 2016, 185, p 484-487

    Article  CAS  Google Scholar 

  17. X.M. Liu, D.Y. He, Y.M. Wang, Z. Zhou, G.H. Wang, Z. Tan, and Z.J. Wang, The Influence of Spray Parameters on the Characteristics of Hydroxyapatite In-flight Particles, Splats and Coatings by Micro-plasma Spraying, J. Therm. Spray Technol., 2018, 27(4), p 667-679

    Article  CAS  Google Scholar 

  18. V.F. Shamray, V.P. Sirotinkin, I.V. Smirnov, V.I. Kalita, A.Y. Fedotov, S.M. Barinov, and V.S. Komlev, Structure of the Hydroxyapatite Plasma-Sprayed Coatings Deposited on Pre-heated Titanium Substrates, Ceram. Int., 2017, 43(12), p 9105-9109

    Article  CAS  Google Scholar 

  19. M. Inagaki, Y. Yokogawa, and T. Kameyama, Formation of Highly Oriented Hydroxyapatite in Hydroxyapatite/Titanium Composite Coatings by Radiofrequency Thermal Plasma Spraying, J. Mater. Sci. Mater. Med., 2003, 14(10), p 919-922

    Article  CAS  Google Scholar 

  20. W.D. Tong, J.Y. Chen, X.D. Li, J.M. Feng, Y. Cao, Z.J. Yang, and X.D. Zhang, Preferred Orientation of Plasma Sprayed Hydroxyapatite Coatings, J. Mater. Sci., 1996, 31(14), p 3739-3742

    Article  CAS  Google Scholar 

  21. T. Toda, M. Kou, S. Fujimoto, O. Fukumasa, and W. Oohara, Production of High Quality Ti-HAp Functionally Graded Coating Using Well-Controlled Thermal Plasmas, J. Plasma Fusion Res., 2009, 8, p 1422-1426

    Google Scholar 

  22. I.H. Jung, K.K. Bae, K.C. Song, M.S. Yang, and S.K. Ihm, Columnar Grain Growth of Yttria-Stabilized-Zirconia in Inductively Coupled Plasma Spraying, J. Therm. Spray Technol., 2004, 13(4), p 544-553

    Article  CAS  Google Scholar 

  23. K.A. Gross, C.C. Berndt, and H. Herman, Amorphous Phase Formation in Plasma-Sprayed Hydroxyapatite Coatings, J. Biomed. Mater. Res. A., 1998, 39, p 407-414

    Article  CAS  Google Scholar 

  24. W. Li, J. Liu, Y. Zhou, S.F. Wen, Q.S. Wei, C.Z. Yan, and Y.S. Shi, Effect of Substrate Preheating on the Texture, Phase and Nanohardness of a Ti–45Al–2Cr–5Nb Alloy Processed by Selective Laser Melting, Scripta Mater., 2016, 118, p 13-18

    Article  CAS  Google Scholar 

  25. M. Inagaki and T. Kameyama, Phase Transformation of Plasma-sprayed Hydroxyapatite Coating with Preferred Crystalline Orientation, Biomaterials, 2007, 28(19), p 2923-2931

    Article  CAS  Google Scholar 

  26. K.A. Khor, H. Li, and P. Cheang, Processing–Microstructure–Property Relations in HVOF Sprayed Calcium Phosphate Based Bioceramic Coatings, Biomaterials, 2003, 24(13), p 2233-2243

    Article  CAS  Google Scholar 

  27. C.Y. Yang, B.C. Wang, E. Chang, and J.D. Wu, The Influences of Plasma Spraying Parameters on the Characteristics of Hydroxyapatite Coatings: A Quantitative Study, J. Mater. Sci. Mater. Med., 1995, 6(5), p 249-257

    Article  CAS  Google Scholar 

  28. I. Demnati, D. Grossin, C. Combes, and C. Rey, Plasma-Sprayed Apatite Coatings: Review of Physical-Chemical Characteristics and their Biological Consequences, J. Med. Biol. Eng., 2014, 34(1), p 1-7

    Article  Google Scholar 

  29. S. Dyshlovenko, B. Pateyron, L. Pawlowski, and D. Murano, Numerical Simulation of Hydroxyapatite Powder Behaviour in Plasma Jet, Surf. Coat. Technol., 2004, 187(2-3), p 408-409

    Article  CAS  Google Scholar 

  30. C.J. Liao, F.H. Lin, K.S. Chen, and J.S. Sun, Thermal Decomposition and Reconstitution of Hydroxyapatite in Air Atmosphere, Biomaterials, 1999, 20(19), p 1807-1813

    Article  CAS  Google Scholar 

  31. T.J. Levingstone, Optimisation of Plasma Sprayed Hydroxyapatite Coatings, PhD thesis, Dublin City University (2008)

  32. S. Guessasma, G. Montavon, and C. Coddet, Velocity and Temperature Distributions of Alumina–titania In-flight Particles in the Atmospheric Plasma Spray Process, Surf. Coat. Technol., 2005, 192(1), p 70-76

    Article  CAS  Google Scholar 

  33. X.M. Liu, D.Y. He, Z. Zhou, G.H. Wang, Z.J. Wang, W. Xu, and Z. Tan, Characteristics of (002) Oriented Hydroxyapatite Coatings Deposited by Atmospheric Plasma Spraying, Coating, 2018, 8, p 258

    Article  Google Scholar 

  34. T. Kameyama, A. Hasegawa, A. Motoe, M. Ueda, K. Onuma, K. Akashi, and K. Fukuda, A Radio-Frequency Thermal Plasma Spraying for Coating of Hydroxyapatite, in First International Conference on Processing Materials for Properties, Japan (1993), pp. 1097–1100

  35. T. Kameyama, M. Ueda, K. Onuma, A. Motoe, K. Ohsaki, H.Tanizaki, and K. Iwasaki, Characteristics, of a radio-frequency thermal plasma spraying method for the coating of hydroxyapatite, in Proceeding of the 14th International Thermal Spray Conference, Japan (1995), p. 187

  36. R. Astala, and M.J. Stott, First-Principles Study of Hydroxyapatite Surfaces and Water Adsorption, Phys. Rev. B, 2008, 78(7), p 075427

    Article  Google Scholar 

  37. A.A. Ivanova, M.A. Surmeneva, R.A. Surmenev, and D. Depla, Structural Evolution and Growth Mechanisms of RF-Magnetron Sputter-Deposited Hydroxyapatite Thin Films on the Basis of Unified Principles, Appl. Surf. Sci., 2017, 425, p 497-506

    Article  CAS  Google Scholar 

  38. K.A. Gross, The Amorphous Phases in Hydroxyapatite Coatings, State University of New Yoke at Stony Brook, Stony Brook, NY, 1997

    Google Scholar 

  39. H. Kim, R.P. Camata, S. Lee, G.S. Rohrer, A.D. Rollett, and Y.K. Vohra, Crystallographic Texture in Pulsed Laser Deposited Hydroxyapatite Bioceramic Coatings, Acta Mater., 2007, 55(1), p 131-139

    Article  CAS  Google Scholar 

  40. R. McPherson, N. Gane, and T.J. Bastow, Structural Characterization of Plasma-Sprayed Hydroxyapatite Coatings, J. Mater. Sci. Mater. Med., 1995, 6, p 327-334

    Article  CAS  Google Scholar 

  41. F.H. Lin, C.J. Liao, K.S. Chen, and J.S. Sun, Thermal Reconstruction Behavior of the Quenched Hydroxyapatite Powder During Reheating in Air, Mater. Sci. Eng., C, 2000, 13(1-2), p 97-104

    Article  Google Scholar 

  42. J. Cizek, K.A. Khor, and Z. Prochazka, Influence of Spraying Conditions on Thermal and Velocity Properties of Plasma Sprayed Hydroxyapatite, Mater. Sci. Eng., C, 2007, 27(2), p 340-344

    Article  CAS  Google Scholar 

  43. T.J. Levingstone, M. Ardhaoui, K. Benyounis, L. Looney, and J.T. Stokes, Plasma Sprayed Hydroxyapatite Coatings: Understanding Process Relationships Using Design of Experiment Analysis, Surf. Coat. Technol., 2015, 283, p 29-36

    Article  CAS  Google Scholar 

  44. M. Fukumoto, E. Nishioka, and T. Matsubara, Flattening and Solidification Behavior of a Metal Droplet on a Flat Substrate Surface Held at Various Temperatures, Surf. Coat. Technol., 1999, 120, p 131-137

    Article  Google Scholar 

  45. V.V. Sobolev, Formation of Splat Morphology During Thermal Spraying, Mater. Lett., 1998, 36(1-4), p 123-127

    Article  CAS  Google Scholar 

  46. H.K. Tsou, P.Y. Hsieh, C.J. Chung, T.W. Shyr, and J.L. He, Low-temperature Deposition of Anatase TiO2 on Medical Grade Polyetheretherketone to Assist Osseous Integration, Surf. Coat. Technol., 2009, 204(6-7), p 1121-1125

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51471010) and the National Natural Science Fund for Innovative Research Groups (Grant No. 51621003). The authors would like to gratefully thank Associate Professor F. Yang, College of Foreign Languages, Beijing University of Technology, for her kind assistance during writing of this contribution.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-mei Liu or Ding-yong He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Xm., He, Dy., Zhou, Z. et al. Atmospheric Plasma-Sprayed Hydroxyapatite Coatings with (002) Texture. J Therm Spray Tech 27, 1291–1301 (2018). https://doi.org/10.1007/s11666-018-0768-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-018-0768-1

Keywords

Navigation