Skip to main content

Advertisement

Log in

Characterization of Thermal-Sprayed HAP and HAP/TiO2 Coatings for Biomedical Applications

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In the present study, hydroxyapatite (HAP) coating along with HAP/TiO2 coating has been deposited by high-velocity flame spray (HVFS) technique onto 316LSS. Titania was used as a bond coat and HAP as top coat in HAP/TiO2 coating. The main aim of the study is to investigate the corrosion behavior of thermal spray coating of HAP and HAP/TiO2 on steel. Electrochemical corrosion testing was carried out using potentiodynamic polarization test. The corrosion behavior of bare and as-sprayed specimens was analyzed in simulated body fluid known as Hank’s solution. As-sprayed specimens along with corroded specimens were further characterized by XRD, SEM/EDS, and x-ray mapping analysis. It was observed that the HAP/TiO2 coating possessed higher microhardness (280 Hv) as compared to HAP coating (254 Hv). Surface roughness also got enhanced in case of HAP/TiO2 coating (9.35 μm) as compared to pure HAP coating (7.37 μm). The porosity of the HAP coating was found to be higher than the bond coating. It was observed that the Ca/P ratio almost resembled that of the natural bone composition. The corrosion resistance of steel increased after the deposition of HAP and HAP/TiO2 coatings. The maximum corrosion resistance was exhibited by HAP/TiO2 coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. L.L. Hench and E.C. Ethridge, Biomaterials, an Interfacial Approach, Academic Press, Cambridge, 1982

    Google Scholar 

  2. W. Bonfield and K.E. Tanner, Adsorption of Biomolecules on Ceramic Particles and the Impact on Biomedical Applications, Mater. World, 1997, 5, p 18-20

    CAS  Google Scholar 

  3. R. Singh and N.B. Dahotre, Corrosion Degradation, and Prevention by Surface Modification of Biometallic Materials, J. Mater. Sci. Mater. Med., 2007, 18(5), p 725-751

    Article  CAS  Google Scholar 

  4. L. Xu, F. Pan, G. Yu, L. Yang, E. Zhang, and K. Yang, In Vitro and In Vivo Evaluation of the Surface Bioactivity of a Calcium Phosphate Coated Magnesium Alloy, Biomaterials, 2009, 30(8), p 1512-1523

    Article  CAS  Google Scholar 

  5. T.M. Sridhar, T.K. Arumugam, S. Rajeswari, and M. Subbaiyan, Electrochemical Behaviour of Hydroxyapatite-Coated Stainless Steel Implants, J. Mater. Sci. Lett., 1997, 16, p 1964-1967

    Article  CAS  Google Scholar 

  6. L.L. Hench, CRC Handbook of Bonfield W and Tanner K. E., Bioactive Ceramics, Vol 1, T. Yamamuro, L.L. Hench, and J. Wilson, Ed., CRC Press, Boca Raton, 1997

    Google Scholar 

  7. R.B. Heimann and T.A. Vu, Low-Pressure Plasma Sprayed Bioceramic Coatings with Improved Adhesion Strength and Resorption Resistance, J. Therm. Spray Technol., 1997, 6, p 145-149

    Article  CAS  Google Scholar 

  8. M.L. Pereira, A.M. Abreu, J.P. Sousa, and G.S. Carvalho, Chromium Accumulation and Ultrastructural Changes in the Mouse Liver by Stainless Steel Corrosion Products, J. Mater. Sci. Mater. Med., 1995, 6, p 523-527

    Article  CAS  Google Scholar 

  9. C.Y. Yang, R. Lin, B.C. Lee, T.M. Wang, E. Chang, Y.S. Hang, and P.Q. Chen, In Vitro and In Vivo Mechanical Evaluations of Plasma-Sprayed Hydroxyapatite Coatings on Titanium Implants: The Effect of Coating Characteristics, J. Biomed. Mater., 1999, 37, p 35-345

    Google Scholar 

  10. J. Chen, W. Tong, Y. Cao, J. Feng, and X. Zhang, Effect of Atmosphere on Phase Transformation in Plasma-Sprayed Hydroxyapatite Coatings During Heat Treatment, J. Biomed. Mater. Res., 1997, 34(1), p 15-20

    Article  CAS  Google Scholar 

  11. E. Milell, F. Cosentino, A. Licciuli, and C. Massaro, Preparation and Characterisation of Titania/Hydroxyapatite Composite Coatings Obtained by Sol–Gel Process, Biomaterials, 2001, 22, p 1425-1431

    Article  Google Scholar 

  12. V. Nelea, C. Morosanu, M. Lliescue, and I.N. Mihailescu, Microstructure and Mechanical Properties of Hydroxyapatite Thin Films Grown by RF Magnetron Sputtering, Surf. Coat. Technol., 2003, 173, p 315-322

    Article  CAS  Google Scholar 

  13. S.C.G. Leewenburgh, J.G.C. Wolke, M.C. Siebers, J. Schoonam, and J.A. Jansen, The Influence of the Crystallinity of Electrostatic Spray Deposition- Derived Coatings on Osteoblast- Like Cell Behavior, in Vitro, Biomaterials, 2006, 27, p 3368-3378

    Article  Google Scholar 

  14. C.X. Wang, Z.Q. Chen, L.M. Guan, M. Wang, Z.Y. Liu, and P.L. Wang, Fabrication and Characterisation of Graded Calcium Phosphate Coatings Produced by Ion Beam Sputtering/Mixing Deposition, Nucl. Instrum. Methods Phys. Res. B, 2001, 179, p 364-372

    Article  CAS  Google Scholar 

  15. H. Khandewala, H. Singh, K. Aggarwal, S. Parkash, and R.D. Aggarwal, Characterization of Hydroxyapatite Coating by Pulse Laser Deposition Technique on Stainless Steel 316 L by Varying Laser Energy, Appl. Surf. Sci., 2013, 265, p 30-35

    Article  Google Scholar 

  16. N. Bala, H. Singh, J. Karthikeyan, and S. Parkash, Cold Spray Coating Process for Corrosion Protection: A Review, J. Surf. Eng., 2014, 30, p 414-421

    Article  CAS  Google Scholar 

  17. T.P. Singh, H. Singh, and H. Singh, Characterization and In Vitro Corrosion Investigations of Thermal Sprayed Hydroxyapatite and Hydroxyapatite-Titania Coatings on Ti Alloy, Metall. Mater. Trans. A, 2012, 43, p 4365-4376

    Article  Google Scholar 

  18. A. Singh, G. Singh, and V. Chawla, Characterization of Vacuum Plasma Sprayed Reinforced Hydroxyapatite Coatings on Ti-6Al-4V Alloy, Trans. Indian Inst. Met., 2017, 70(10), p 2609-2628

    Article  CAS  Google Scholar 

  19. A. Singh, G. Singh, and V. Chawla, Mechanical Properties of Vacuum Plasma Sprayed Reinforced Hydroxyapatite Coatings on Ti-6Al-4V Alloy, J. Aust. Ceramic Soc., 2017, 53(2), p 795-810

    Article  Google Scholar 

  20. Z. Schwartz and B.D. Boyan, Underlying Mechanisms at the Bone-Biomaterial Interface, J. Cell. Biochem., 1994, 56(3), p 340-347

    Article  CAS  Google Scholar 

  21. T.M. Lee, R.S. Tsai, E. Chang, C.Y. Yang, and M.R. Yang, The Cell Attachment and Morphology of Neonatal Rat Calvarial Osteoblasts on the Surface of Ti6Al4V and Plasma Sprayed HA Coating: Effect of Surface Roughness and Serum Contents, J. Mater. Sci. Mater. Med., 2002, 13, p 341-350

    Article  CAS  Google Scholar 

  22. K. Kieswetter, Z. Schwartz, T.W. Hummert, D.L. Cochran, J. Simpson, D. Dean, and B.D. Boyan, Surface Roughness Modulates the Local Production of Growth Factors and Cytokines by Osteoblast-Like MG-63 Cells, J. Biomed. Mater. Res., 1999, 32(1), p 55-63

    Article  Google Scholar 

  23. J. Lincks, B.D. Boyan, C.D. Blanchard, C.H. Lohmann, Y. Liu, D.L. Cochran, D.D. Dean, and Z. Schwartz, Response of MG63 Osteoblast-Like Cells to Titanium and Titanium Alloy is Dependent on Surface Roughness and Composition, Biomaterials, 1998, 19, p 2219-2232

    Article  CAS  Google Scholar 

  24. K.A. Gross and S. Saber-Samandari, Nano-Mechanical Properties of Hydroxyapatite Coatings with a Focus on the Single Solidified Droplet, J. Aust. Ceram. Soc., 2007, 43(2), p 98-101

    CAS  Google Scholar 

  25. T.P. Singh, H. Singh, and H. Singh, Characterization, Corrosion Resistance and Cell Response of High Velocity Flame Sprayed HA and HA/TiO2 Coatings on 316L SS, J. Therm. Spray Technol., 2011, 21, p 917–927

    Article  Google Scholar 

  26. T. Singh, N. Bala, and L. Singh, Characterization and Corrosion Behavior of Hydroxyapatite and Hydroxyapatite/Titania Bond Coating on 316LSS Substrate in Simulated Body Fluid, IJSE Mater. Technol., 2013, 3, p 5-9

    Google Scholar 

  27. G. Singh, H. Singh, and B.S. Sidhu, The Effect of CaP Concentration on Corrosion Behavior of Plasma Sprayed Hydroxyapatite Coating on Titanium in Simulated Body Fluid, J. Biomim. Biomater. Tissue Eng., 2013, 18, p 103-108. https://doi.org/10.4172/1662-100x.1000103j

    Article  Google Scholar 

  28. C.Y. Yang, R. Lin, B.C. Wang, T.M. Lee, E. Chang, Y.S. Hang, and P.Q. Chen, In Vitro and In Vivo Mechanical Evaluations of Plasma-Sprayed Hydroxyapatite Coatings on Titanium Implants: The Effect of Coating Characteristics, J. Biomed. Mater., 1999, 37, p 335-345

    Article  Google Scholar 

  29. S.H. Maxian, J.P. Zawadsky, and M.G. Dunn, Mechanical and Histological Evaluation of Amorphous Calcium Phosphate and Poorly Crystallized Hydroxyapatite Coatings on Titanium Coatings, J. Biomed. Mater. Res., 1993, 27(6), p 717-728

    Article  CAS  Google Scholar 

  30. P. Ducheyne, S. Radin, and L. King, The Effect of Calcium Phosphate Ceramic Composition and Structure on In Vitro Behavior, I. Dissolution, J. Biomed. Mater. Res., 1993, 27, p 25-34

    Article  CAS  Google Scholar 

  31. M.F. López, A. Gutierrez, and J.A. Jimenez, In-Vitro Corrosion Behaviour of Titanium Alloys Without Vanadium, Electrochimica Acta, 2002, 47, p 1359-1364

    Article  Google Scholar 

  32. B.Y. Chou and E. Chang, Plasma Sprayed Zirconia Bond Coat as an Intermediate Layer for Hydroxyapatite Coating on Titanium Alloy Substrate, J. Mater. Sci. Mater. Med., 2002, 13, p 589-595

    Article  CAS  Google Scholar 

  33. P.C. Rath, L. Besra, B.P. Singh, and S. Bhattacharj, Titania/Hydroxyapatite Bi-Layer Coating on Ti Metal by Electrophoretic Deposition: Characterization and Corrosion Studies, Ceram. Int., 2012, 38, p 3209-3216. www.sciencedirect.com

  34. H.C. Hsu, S.C. Wu, C.H. Yang, and W. Fu, Ho, ZrO2/Hydroxyapatite Coating on Titanium by Electrolytic Deposition, J. Mater. Sci. Mater. Med., 2009, 20, p 15-619

    Article  Google Scholar 

  35. C.T. Kwok, P.K. Wong, F.T. Cheng, and H.C. Man, Characterization and Corrosion Behavior of Hydroxyapatite Coatings on Ti6Al4V Fabricated by Electrophoretic Deposition, Appl. Surf. Sci., 2009, 255(13-14), p 6736-6744

    Article  CAS  Google Scholar 

  36. S.S. Kohles, M.B. Clark, C.A. Brown, and J.N. Kennedy, Direct Assessment of Profilometric Roughness Variability from Typical Implant Surface Types, Int. J. Oral Maxillofac. Implants, 2004, 19(4), p 510-516

    Google Scholar 

  37. H. Kurzweg, R.B. Heimann, T. Troczynski, and M.L. Wayman, Development of Plasma-Sprayed Bioceramic Coatings with Bondy Coats Based on Titania and Zirconia, Biomaterials, 1998, 19, p 1507-1511

    Article  CAS  Google Scholar 

  38. M.H. Fathi and F. Azam, Novel Hydroxyapatite/Tantalum Surface Coating for Metallic Dental Implant, Mater. Lett., 2007, 61(4-5), p 1238-1241

    Article  CAS  Google Scholar 

  39. Y.P. Lu, M.S. Li, S.T. Li, and Z.G. Wang, Plasma-Sprayed Hydroxyapatite + Titania Composite Bond Coat for Hydroxyapatite Coating on Titanium Substrate, Biomaterials, 2004, 25, p 4393-4403

    Article  CAS  Google Scholar 

  40. H. Li, K.A. Khor, and P. Cheang, Titanium Dioxide Reinforced Hydroxyapatite Coatings Deposited by High-Velocity Oxy-Fuel (HVOF) Spray, Biomaterials, 2002, 23(1), p 85-91

    Article  CAS  Google Scholar 

  41. M. Gaona, R.S. Lima, and B.R. Marple, Nanostructured Titania/Hydroxyapatite Composite Coatings Deposited by High-Velocity OXY-Fuel (HVOF) Spraying, Mater. Sci. Eng., 2007, 458(1-2), p 141-149

    Article  Google Scholar 

  42. J. Weng, X. Liu, X. Zhang, and X. Ji, Thermal Decomposition of Hydroxyapatite Structure Induced by Titanium and Its Dioxide, J. Mater. Sci. Lett., 1994, 13(3), p 159-161

    Article  CAS  Google Scholar 

  43. A.R. Boyd, B.J. Meenan, and N.S. Leyland, Surface Characterization of the Evolving Nature of Radio Frequency (RF) Magnetron Sputter Deposited Calcium Phosphate Thin Films after Exposure to Physiological Solution, Surf. Coat. Technol., 2006, 200, p 6002-6013

    Article  CAS  Google Scholar 

  44. R.A. Surmenev, M.A. Surmeneva, K.E. Evdokimov, V.F. Pichugin, T. Peitsch, and M. Epple, The Influence of the Deposition Parameters on the Properties of an rf- Magnetron-Deposited Nanostructured Calcium Phosphate Coating and a Possible Growth Mechanism, Surf. Coat. Technol., 2011, 205(12), p 3600-3606

    Article  CAS  Google Scholar 

  45. T.F. Stoica, C. Morosanu, A. Slav, T. Stoica, P. Osiceanu, C. Anastasescu, M. Gartner, and M. Zaharescu, Hydroxyapatite Films Obtained by Sol–Gel and Sputtering Methods, Thin Solid Films, 2008, 516, p 8112-8116

    Article  CAS  Google Scholar 

  46. L.Q. Tri and D.H.C. Chua, An Investigation into the Effects of High Laser Fluence on Hydroxyapatite/Calcium Phosphate Films Deposited by Pulsed Laser Deposition, Appl. Surf. Sci., 2009, 256(1), p 76-80

    Article  CAS  Google Scholar 

  47. R. d’Haese, L. Pawlowski, M. Bigan, R. Jaworski, and M. Martel, Phase Evolution of Hydroxyapatite Coatings Suspension Plasma Sprayed using Variable Parameters in Simulated Body Fluid, Surf. Coat. Technol., 2010, 204, p 1236-1246

    Article  Google Scholar 

  48. R. Snyders, E. Bousser, D. Music, J. Jensen, S. Hocquet, and J.M. Schneider, Influence of the Chemical Composition on the Phase Constitution and the Elastic Properties of RF-Sputtered Hydroxyapatite Coatings, Plasma Process. Polym., 2008, 5(2), p 168-174

    Article  CAS  Google Scholar 

  49. C.S. Yip, K.A. Khor, N.L. Loh, and P. Chang, Thermal Spraying of Ti-6Al-4V/Hydroxyapatite Composite Coatings: Powder Processing and Post-spray Treatment, J. Mater. Process. Technol., 1997, 65, p 73-79

    Article  Google Scholar 

  50. W.S.W. Harun, R. Asri, J. Alias, F.H. Zulkifl, K. Kadirgama, S. Ghani, and J.H.M. Shariffuddin, A Comprehensive Review of Hydroxyapatite-Based Coatings Adhesion on Metallic Biomaterials, Ceram. Int., 2018, 44(2), p 1250-1268

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors express their sincere thanks to Dr. Harpreet Singh, Professor, Mechanical Engineering Department, Indian Institute of Technology, Rupnagar (Punjab) and Metallizing Equipment Industry, Jodhpur for their kind co-operation during this research work. The author would also like to thank IKGPTU Kapurthala for providing access to papers and journals required for research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niraj Bala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, S., Bala, N. & Khosla, C. Characterization of Thermal-Sprayed HAP and HAP/TiO2 Coatings for Biomedical Applications. J Therm Spray Tech 27, 1356–1370 (2018). https://doi.org/10.1007/s11666-018-0766-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-018-0766-3

Keywords

Navigation