Skip to main content

Advertisement

Log in

Fabrication and Characterization of Suspension Plasma-Sprayed Fluoridated Hydroxyapatite Coatings for Biomedical Applications

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Fluoridated hydroxyapatite (FHA) coatings were prepared on a Ti substrate using a suspension plasma spraying technique. The crystalline phases and chemical compositions of the coatings were characterized using x-ray diffraction, Fourier transform infrared spectroscopy, and x-ray photoelectron spectroscopy. The analysis confirmed that the coating consisted of an FHA phase. The corrosion behavior in simulated body fluid was studied using potentiodynamic polarization tests, and the results indicated that the FHA coating greatly enhanced the corrosion resistance of the Ti substrate. The chemical stability of the FHA coatings was assessed by evaluating the release of Ca2+ ions. The results indicated that the substitution of fluorine into the hydroxyapatite (HA) structure had a positive effect on the dissolution resistance of the HA. The antibacterial activity was investigated using a surface-plating method; the results revealed that the antibacterial activity of the FHA coating was greater than that of the pure HA coatings. During cell culture tests, the FHA coating did not exhibit cytotoxicity toward the osteoblast cell line, and the cell proliferation was comparable with that of the HA coatings. The antibacterial activity and cell culture results suggested that the plasma-sprayed FHA coating possesses good antibacterial qualities, but is biocompatible with osteoblasts. The promising features of the FHA coating render it suitable for orthopedic and dental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Gadow, A. Killinger, and N. Stiegler, Hydroxyapatite Coatings for Biomedical Applications Deposited by Different Thermal Spray Techniques, Surf. Coat. Technol., 2010, 205, p 1157-1164

    Article  CAS  Google Scholar 

  2. A. Cattini, D. Bellucci, A. Sola, L. Pawłowski, and V. Cannillo, Microstructural Design of Functionally Graded Coatings Composed of Suspension Plasma Sprayed Hydroxyapatite and Bioactive Glass, J. Biomed. Mater. Res. Part B Appl. Biomater., 2014, 102, p 551-560

    Article  Google Scholar 

  3. R.T. Candidato, Jr., P. Sokołowski, L. Pawłowski, and A. Denoirjean, Preliminary Study of Hydroxyapatite Coatings Synthesis Using Solution Precursor Plasma Spraying, Surf. Coat. Technol., 2015, 277, p 242-250

    Article  CAS  Google Scholar 

  4. P. Yin, F.F. Feng, T. Lei, X.H. Zhong, and X.C. Jian, Osteoblastic Cell Response on Biphasic Fluorhydroxyapatite/Strontium-Substituted Hydroxyapatite Coatings, J. Biomed. Mater. Res. Part A, 2014, 102, p 621-627

    Article  Google Scholar 

  5. Y. Cai, S. Zhang, X. Zeng, Y. Wang, M. Qian, and W. Weng, Improvement of Bioactivity with Magnesium and Fluorine Ions Incorporated Hydroxyapatite Coatings via Sol-Gel Deposition on Ti6Al4 V Alloys, Thin Solid Films, 2009, 517, p 5347-5351

    Article  CAS  Google Scholar 

  6. Y. Chen and X. Miao, Thermal and Chemical Stability of Fluorohydroxyapatite Ceramics with Different Fluorine Contents, Biomaterials, 2005, 26, p 1205-1210

    Article  CAS  Google Scholar 

  7. N. Johari, M.H. Fathi, and M.A. Golozar, The Effect of Fluorine Content on the Mechanical Properties of Poly (ε-Caprolactone) Nano-fluoridated Hydroxyapatite Scaffold for Bone-Tissue Engineering, Ceram. Inter., 2011, 37, p 3247-3251

    Article  CAS  Google Scholar 

  8. A. Wiegand, W. Buchalla, and T. Attin, Review on Fluoride-Releasing Restorative Materials-Fluoride Release and Uptake Characteristics, Antibacterial Activity and Influence on Caries Formation, Dental Mater., 2007, 23, p 343-362

    Article  CAS  Google Scholar 

  9. X. Ge, Y. Leng, C. Bao, S.L. Xu, R. Wang, and F. Ren, Antibacterial Coatings of Fluoridated Hydroxyapatite for Percutaneous Implants, J. Biomed. Mater. Res. Part A, 2010, 95, p 588-599

    Article  Google Scholar 

  10. Y. Wang, S. Zhang, X. Zeng, L.L. Ma, W. Weng, W. Yan, and M. Qian, Osteoblastic Cell Response on Fluoridated Hydroxyapatite Coatings, Acta Biomater., 2007, 3, p 191-197

    Article  CAS  Google Scholar 

  11. K. Cheng, W. Weng, H. Wang, and S. Zhang, In Vitro Behavior of Osteoblast-Like Cells on Fluoridated Hydroxyapatite Coatings, Biomaterials, 2005, 26, p 6288-6295

    Article  CAS  Google Scholar 

  12. S. Bsat, A. Speirs, and X. Huang, Recent Trends in Newly Developed Plasma-Sprayed and Sintered Coatings for Implant Applications, J. Thermal Spray Technol., 2016, 25(6), p 1088-1110

    Article  CAS  Google Scholar 

  13. R.A. Surmenev, A Review of Plasma-Assisted Methods for Calcium Phosphate-Based Coatings Fabrication, Surf. Coat. Technol., 2012, 206, p 2035-2056

    Article  CAS  Google Scholar 

  14. A. Killinger, R. Gadow, G. Mauer, A. Guignard, R. Vaßen, and D. Stöver, Review of New Developments in Suspension and Solution Precursor Thermal Spray Processes, J. Thermal Spray Technol., 2011, 20(4), p 677-695

    Article  Google Scholar 

  15. W. Fan and Y. Bai, Review of Suspension and Solution Precursor Plasma Sprayed Thermal Barrier Coatings, Ceram. Inter., 2016, 42, p 14299-14312

    Article  CAS  Google Scholar 

  16. P. Fauchais and G. Montavon, Latest Developments in Suspension and Liquid Precursor Thermal Spraying, J. Thermal Spray Technol., 2010, 19, p 226-239

    Article  Google Scholar 

  17. F.L. Toma, L.M. Berger, T. Naumann, and S. Langner, Microstructures of Nanostructured Ceramic Coatings Obtained by Suspension Thermal Spraying, Surf. Coat. Technol., 2008, 202, p 4343-4348

    Article  CAS  Google Scholar 

  18. H. Xu, X. Geng, G. Liu, J. Xiao, D. Li, Y. Zhang, P. Zhu, and C. Zhang, Deposition, Nanostructure and Phase Composition of Suspension Plasma-Sprayed Hydroxyapatite Coatings, Ceram. Inter., 2016, 42, p 8684-8690

    Article  CAS  Google Scholar 

  19. G. Liu, X. Geng, H. Pang, X. Li, X. Li, P. Zhu, and C. Zhang, Deposition of Nanostructured Fluorine-Doped Hydroxyapatite Coating from Aqueous Dispersion by Suspension Plasma Spray, J. Am. Ceram. Soc., 2016, 99(9), p 2899-2904

    Article  CAS  Google Scholar 

  20. G. Bolelli, D. Bellucci, V. Cannillo, L. Lusvarghi, A. Sola, N. Stiegler, P. Müller, A. Killinger, R. Gadow, L. Altomare, and L.D. Nardo, Suspension Thermal Spraying of Hydroxyapatite: Microstructure and In Vitro Behaviour, Mater. Sci. Eng., C, 2014, 34, p 287-303

    Article  CAS  Google Scholar 

  21. Y. Bai, Y. Bai, W. Ma, R. Jia, and X. Zheng, Improved Properties of Carbon Nanotube-Fluorhydroxyapatite Biocomposite: Mechanical, Chemical Stability, and Antibacterial Activity, Adv. Eng. Mater., 2016, 18(11), p 1921-1929

    Article  CAS  Google Scholar 

  22. S. Liu, L. Wei, L. Hao, N. Fang, M.W. Chang, R. Xu, Y. Yang, and Y. Chen, Sharper and Faster “Nano Darts” Kill More Bacteria: A Study of Antibacterial Activity of Individually Dispersed Pristine Single-Walled Carbon Nanotube, ACS Nano, 2009, 12, p 3891-3902

    Article  Google Scholar 

  23. G. Bolelli, D. Bellucci, V. Cannillo, R. Gadow, A. Killinger, L. Lusvarghi, P. Müller, and A. Sola, Comparison Between Suspension Plasma Sprayed and High Velocity Suspension Flame Sprayed Bioactive Coatings, Surf. Coat. Technol., 2015, 280, p 232-249

    Article  CAS  Google Scholar 

  24. A. Cattini, D. Bellucci, A. Sola, L. Pawłowski, and V. Cannillo, Suspension Plasma Spraying of Optimised Functionally Graded Coatings of Bioactive Glass/Hydroxyapatite, Surf. Coat. Technol., 2013, 236, p 118-126

    Article  CAS  Google Scholar 

  25. R. d’Haese, L. Pawlowski, M. Bigan, R. Jaworski, and M. Martel, Phase Evolution of Hydroxapatite Coatings Suspension Plasma Sprayed Using Variable Parameters in Simulated Body Fluid, Surf. Coat. Technol., 2010, 204, p 1236-1246

    Article  Google Scholar 

  26. K. Cheng, S. Zhang, and W. Weng, The F Content in Sol-Gel Derived FHA Coatings: An XPS Study, Surf. Coat. Technol., 2005, 198, p 237-241

    Article  CAS  Google Scholar 

  27. D.K. Pattanayak, Apatite Wollastonite–Poly Methyl Methacrylate Bio-composites, Mater. Sci. Eng., C, 2009, 29, p 1709-1714

    Article  CAS  Google Scholar 

  28. H. Sudo, H.A. Kodama, Y. Amagai, S. Yamamoto, and S. Kasai, In Vitro Differentiation and Calcification in a New Clonal Osteogenic Cell Line Derived from Newborn Mouse Calvaria, J. Cell Biol., 1983, 96, p 191-198

    Article  CAS  Google Scholar 

  29. X. Li, J. Wei, K.E. Aifantis, Y. Fan, Q. Feng, F. Cui, and F. Watari, Current investigations into magnetic nanoparticles for biomedical applications, J. Biomed. Mater. Res. Part A, 2016, 104, p 1285-1296

    Article  CAS  Google Scholar 

  30. X. Li, H. Gao, M. Uo, Y. Sato, T. Akasaka, Q. Feng, F. Cui, X. Liu, and F. Watari, Effect of Carbon Nanotubes on Cellular Functions In Vitro, J. Biomed. Mater. Res. Part A, 2009, 91, p 132-139

    Article  Google Scholar 

  31. L. Savarino, M. Fini, G. Ciapetti, E. Cenni, D. Granchi, and N. Baldini, Biologic Effects of Surface Roughness and Fluorhydroxyapatite Coating on Osteointegration in External Fixation Systems: An In Vivo Experimental Study, J. Biomed. Mater. Res. A, 2003, 66, p 652-661

    Article  CAS  Google Scholar 

  32. W. Jian, C. Yonglie, W. Qianbing, Z. Zhimin, and Y. Haiyang, Fluoridated Hydroxyapatite Coatings on Titanium Obtained by Electrochemical Deposition, Acta Biomater., 2009, 5, p 1798-1807

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by “Inner Mongolia Talent Development Fund ([2016]-149),” “Research Innovation Program for Graduates of Inner Mongolia Autonomous Region” and “The Natural Science Foundation of Inner Mongolia Autonomous Region (2018MS05010).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Bai.

Appendix

Appendix

For convenience, we add an alphabetic list of the shorthand notations used in the text, with some hints where the corresponding terms are introduced and used:

BHI:

Brain heart infusion, a nutrient-rich growth medium for growing bacteria

CFU:

Colony-forming unit, a unit used to estimate the number of viable bacteria

FBS:

Fetal bovine serum, the most widely used serum supplement for the in vitro cell culture

MC3T3-E1:

A murine calvaria-derived pre-osteoblastic cell line, a widely used model system in bone biology

α-MEM:

α-Minimum essential medium, a cell culture medium

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, MTT assay is a colorimetric assay for assessing cell metabolic activity

PBS:

Phosphate-buffered saline, a water-based buffer salt solution commonly used in biological research

SBF:

Simulated body fluid, a solution with an ion concentration close to that of human blood plasma

S. mutans :

Streptococcus mutans, a facultatively anaerobic, gram-positive coccus commonly found in the human oral cavity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Y., Zhou, Sj., Shi, L. et al. Fabrication and Characterization of Suspension Plasma-Sprayed Fluoridated Hydroxyapatite Coatings for Biomedical Applications. J Therm Spray Tech 27, 1322–1332 (2018). https://doi.org/10.1007/s11666-018-0747-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-018-0747-6

Keywords

Navigation