Skip to main content
Log in

Evolution of Residual Stresses in PS-PVD Thermal Barrier Coatings on Thermal Cycling

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Plasma spray-physical vapor deposition (PS-PVD) is an advanced technique to fabricate quasi-columnar structured thermal barrier coatings (TBCs) with excellent thermal cyclic lifetime. In this study, PS-PVD TBCs were investigated via burner rig test. The residual stresses in both of the topcoat layer and the thermally grown oxide (TGO) scale were measured non-destructively using Raman spectroscopy and Cr3+ photoluminescence piezo-spectroscopy, respectively. Evolution of the microstructures and distribution of residual stresses in such kind structured TBCs before and after thermal cycling test were investigated. The accumulated tensile stress in the as-sprayed ceramic topcoat changed to compressive state after 100 cycles and then gradually increased. In addition, the mapping compressive stresses in the TGO measured through the ceramic topcoat surface decreased rapidly and then essentially maintained at a relatively stable state with further testing. Moreover, the pre-heating of the bondcoat could significantly affect the stress distribution in the TGO, in contrast, no obviously influence on the stresses in the YSZ topcoat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D.R. Clarke and C.G. Levi, Materials Design for the Next Generation Thermal Barrier Coatings, Annu. Rev. Mater. Res., 2003, 33, p 383-417

    Article  Google Scholar 

  2. P. Fauchais, Understanding Plasma Spraying, J. Phys. D Appl. Phys., 2004, 37, p 86-108

    Article  Google Scholar 

  3. K. Von Niesen, M. Gindrat, and A. Refke, Vapor Phase Deposition Using Plasma Spray-PVD™, J. Therm. Spray Technol., 2010, 19(1/2), p 502-509

    Article  Google Scholar 

  4. A. Hospach, G. Mauer, R. Vaßen, and D. Stöver, Columnar-Structured Thermal Barrier Coatings (TBCs) by Thin Film Low-Pressure Plasma Spraying (LPPS-TF), J. Therm. Spray Technol., 2011, 20(1/2), p 116-120

    Article  Google Scholar 

  5. K.V. Niessen and M. Gindrat, Plasma Sprayed-PVD: A New Thermal Spray Process to Deposit Out of the Vapor Phase, J. Therm. Spray Technol., 2011, 20(4), p 736-743

    Article  Google Scholar 

  6. A. Hospach, G. Mauer, R. Vaßen, and D. Stöver, Characteristics of Ceramic Coatings Made by Thin Film Low Pressure Plasma Spraying (LPPS-TF), J. Therm. Spray Technol., 2012, 21(3–4), p 435-440

    Article  Google Scholar 

  7. M. Goral, S. Kotowski, A. Nowotnik, M. Pytel, M. Drajewicz, and J. Sieniawski, PS-PVD Deposition of Thermal Barrier Coatings, Surf. Coat. Technol., 2013, 237, p 51-55

    Article  Google Scholar 

  8. G. Mauer, M.O. Jarligo, S. Rezanka, A. Hospach, and R. Vaßen, Novel Opportunities for Thermal Spray by PS-PVD, Surf. Coat. Technol., 2015, 268, p 52-57

    Article  Google Scholar 

  9. G. Mauer, A. Hospach, and R. Vaßen, Process Development and Coating Characteristics of Plasma Spray-PVD, Surf. Coat. Technol., 2013, 220, p 219-224

    Article  Google Scholar 

  10. G. Mauer, A. Hospach, N. Zotov, and R. Vaßen, Process Conditions and Microstructures of Ceramic Coatings by Gas Phase Deposition Based on Plasma Spraying, J. Therm. Spray Technol., 2013, 22(2/3), p 83-89

    Article  Google Scholar 

  11. S. Rezanka, G. Mauer, and R. Vaßen, Improved Thermal Cycling Durability of Thermal Barrier Coatings Manufactured by PS-PVD, J. Therm. Spray Technol., 2012, 23(1/2), p 182-189

    Google Scholar 

  12. L.H. Gao, H.B. Guo, L.L. Wei, C.Y. Li, and H.B. Xu, Microstructure, Thermal Conductivity and Thermal Cycling Behavior of Thermal Barrier Coatings Prepared by Plasma Spray Physical Vapor Deposition, Surf. Coat. Technol., 2015, 276, p 424-430

    Article  Google Scholar 

  13. R.A. Miller, Thermal Barrier Coatings for Aircraft Engines: History and Directions, J. Therm. Spray Technol., 1997, 6(1), p 35-42

    Article  Google Scholar 

  14. R. Vassen, A. Stuke, and D. Stöver, Recent Development in the Field of Thermal Barrier Coatings, J. Therm. Spray Technol., 2009, 18(2), p 181-186

    Article  Google Scholar 

  15. D.R. Clarke and C.G. Levi, Materials Design for the Next Generation Thermal Barrier Coatings, Annu. Rev. Mater. Res., 2003, 33, p 383-417

    Article  Google Scholar 

  16. A. Rabiei and A.G. Evans, Failure Mechanisms Associated with the Thermally Grown Oxide in Plasma Sprayed Thermal Barrier Coatings, Acta Mater., 2000, 48, p 3963-3976

    Article  Google Scholar 

  17. O. Trunova, T. Beck, R. Herzog, R.W. Steinbrech, and L. Singheiser, Damage Mechanisms and Lifetime Behavior of Plasma Sprayed Thermal Barrier Coating Systems for Gas Turbines-Part I: Experiments, Surf. Coat. Technol., 2008, 202, p 5027-5032

    Article  Google Scholar 

  18. E.A.G. Shillington and D.R. Clarke, Spalling Failure of a Thermal Barrier Coating Associated with Aluminum Depletion in the Bond-Coat, Acta Mater., 1999, 47, p 1297-1305

    Article  Google Scholar 

  19. K.W. Schlichting, N.P. Padture, E.H. Jordan, and M. Gell, Failure Modes in Plasma-Sprayed Thermal Barrier Coatings, Mater. Sci. Eng. A, 2003, 342, p 120-130

    Article  Google Scholar 

  20. V. Teixeira, M. Andritschky, W. Fischer, H.P. Buchkremer, and D. Stöver, Analysis of Residual Stresses in Thermal Barrier Coatings, J. Mater. Proc. Technol., 1999, 92(93), p 209-216

    Article  Google Scholar 

  21. D. Liu, O. Lord, O. Stevens, and P.E.J. Flewitt, Calibration of Raman spectroscopy in the Stress Measurement of Air-Plasma-Sprayed Yttria-Stabilized Zirconia, Appl. Spectrosc., 2012, 66(10), p 1204-1209

    Article  Google Scholar 

  22. M. Tanaka, M. Hasegawa, A.F. Dericioglu, and Y. Kawawa, Measurement of Residual Stress in Air Plasma-Sprayed Y2O3-ZrO2 Thermal Barrier Coating System Using Micro-Raman Spectroscopy, Mater. Sci. Eng. A, 2006, 419, p 262-268

    Article  Google Scholar 

  23. M. Tanaka, R. Kitazawa, T. Tomimatsu, Y.F. Liu, and Y. Kagawa, Residual Stress Measurement of an EB-PVD Y2O3-ZrO2 Thermal Barrier Coating by Micro-Raman Spectroscopy, Surf. Coat. Technol., 2009, 204, p 657-660

    Article  Google Scholar 

  24. R.J. Christensen, D.M. Lipkin, D.R. Clarke, and K. Murphy, Nondestructive Evaluation of the Oxidation Stresses Through Thermal Barrier Coatings Using Cr3+ Piezospectroscopy, Appl. Phys. Lett., 1996, 69(24), p 3754-3756

    Article  Google Scholar 

  25. D. Liu, O. Lord, O. Stevens, and P.E.J. Flewitt, The Role of Beam Dispersion in Raman and Photo-Stimulated Luminescence Piezo-Spectroscopy of Yttria-Stabilized Zirconia in Multi-Layered Coatings, Acta Mater., 2013, 61, p 12-21

    Article  Google Scholar 

  26. D. Liu, C. Rinaldi, and P.E.J. Flewitt, Effect of Substrate Curvature on the Evolution of Microstructure and Residual Stresses in EB PVD-TBC, J. Eur. Ceram. Soc., 2015, 35, p 2563-2575

    Article  Google Scholar 

  27. B. Heeg, V.K. Tolpygo, and D.R. Clarke, Damage Evolution in Thermal Barrier Coatings with Thermal Cycling, J. Am. Ceram. Soc., 2011, 94, p 112-119

    Article  Google Scholar 

  28. K.W. Schlichting, K. Vaidyanathan, Y.H. Sohn, E.H. Jordan, M. Gell, and N.P. Padture, Application of Cr3+ Photoluminescence Piezo-Spectroscopy to Plasma-Sprayed Thermal Barrier Coatings for Residual Stress Measurement, Mater. Sci. Eng. A, 2000, 291, p 68-77

    Article  Google Scholar 

  29. C.R.C. Lima, S. Dosta, J.M. Guilemany, and D.R. Clarke, The Application of Photoluminescence Piezospectroscopy for Residual Stresses Measurement in Thermally Sprayed TBCs, Surf. Coat. Technol., 2017, 318, p 147-156

    Article  Google Scholar 

  30. X. Zhao and P. Xiao, Residual Stresses in Thermal Barrier Coatings Measured by Photoluminescence Piezospectroscopy and Indentation Technique, Surf. Coat. Technol., 2006, 201, p 1124-1131

    Article  Google Scholar 

  31. J. Voyer, F. Gitzhofer, and M.I. Boulos, Study of the Performance of TBC Under Thermal Cycling Conditions Using an Acoustic Emission Rig, J. Therm. Spray Technol., 1998, 7(2), p 181-190

    Article  Google Scholar 

  32. X.Y. Gong and D.R. Clarke, On the Measurement of Strain in Coatings Formed on a Wrinkled Elastic Substrate, Oxid. Met., 1998, 46, p 355-376

    Article  Google Scholar 

  33. V.K. Tolpygo and D.R. Clarke, Tensile Cracking During Thermal Cycling of Alumina Films Formed by High-Temperature Oxidation, Acta Mater., 1999, 47(13), p 3589-3605

    Article  Google Scholar 

Download references

Acknowledgments

This work was jointly supported by the National natural Science Foundation (NSFC) under the Grant No. 51671208, Natural Science Foundation of Shanghai (No. 17ZR141Z200) and Laboratory foundation of Chinese Academy of Sciences (Grant No. 16S084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunyan Tao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Zhao, H., Zhong, X. et al. Evolution of Residual Stresses in PS-PVD Thermal Barrier Coatings on Thermal Cycling. J Therm Spray Tech 27, 914–923 (2018). https://doi.org/10.1007/s11666-018-0734-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-018-0734-y

Keywords

Navigation