Journal of Thermal Spray Technology

, Volume 27, Issue 4, pp 654–666 | Cite as

Influence of Feedstock Powder Modification by Heat Treatments on the Properties of APS-Sprayed Al2O3-40% TiO2 Coatings

  • Lutz-Michael Berger
  • Kerstin Sempf
  • Yoo Jung Sohn
  • Robert Vaßen
Peer Reviewed


The formation and decomposition of aluminum titanate (Al2TiO5, tialite) in feedstock powders and coatings of the binary Al2O3-TiO2 system are so far poorly understood. A commercial fused and crushed Al2O3-40%TiO2 powder was selected as the feedstock for the experimental series presented in this paper, as the composition is close to that of Al2TiO5. Part of that powder was heat-treated in air at 1150 and 1500 °C in order to modify the phase composition, while not influencing the particle size distribution and processability. The powders were analyzed by thermal analysis, XRD and FESEM including EDS of metallographically prepared cross sections. Only a maximum content of about 45 wt.% Al2TiO5 was possible to obtain with the heat treatment at 1500 °C due to inhomogeneous distribution of Al and Ti in the original powder. Coatings were prepared by plasma spraying using a TriplexPro-210 (Oerlikon Metco) with Ar-H2 and Ar-He plasma gas mixtures at plasma power levels of 41 and 48 kW. Coatings were studied by XRD, SEM including EDS linescans of metallographically prepared cross sections, and microhardness HV1. With the exception of the powder heat-treated at 1500 °C an Al2TiO5-Ti3O5 (tialite–anosovite) solid solution Al2−xTi1+xO5 instead of Al2TiO5 existed in the initial powder and the coatings.


Al2O3-TiO2 Al2TiO5 aluminum titanate APS feedstock powder microstructure phase composition 



Part of this work was funded via AiF (Project 19471 BG) by the German Federal Ministry of Economics and Technology within the framework of the program for promotion of “Industrial Joint Research” (IGF). Colleagues from Fraunhofer IKTS are thanked for execution of feedstock powder preparation by heat treatment of the powders. The support of Karl-Heinz Rauwald (FZ Jülich), who performed the spraying runs, is also gratefully acknowledged.


  1. 1.
    B. Freudenberg, Etude de la réaction à l’état solide Al2O3 + TiO2 → Al2TiO5: observation des structures: Thèse École polytechnique fédérale de Lausanne EPFL, no 709 (1987), EPFL, Lausanne, 1988Google Scholar
  2. 2.
    I.M. Low, Z. Oo, and B.H. O’Connor, Effect of Atmospheres on the Thermal Stability of Aluminium Titanate, Phys B Condens Matter, 2006, 385-386, p 502-504CrossRefGoogle Scholar
  3. 3.
    V. Buscaglia and P. Nanni, Decomposition of Al2TiO5 and Al2(1−x)MgxTi(1+x)O5 Ceramics, J. Am. Ceram. Soc., 1998, 81(10), p 2645-2653CrossRefGoogle Scholar
  4. 4.
    H.J. Seifert, A. Kussmaul, and F. Aldinger, Phase Equilibria and Diffusion Paths in the Ti–Al–O–N System, J. Alloys Compd., 2001, 317-318, p 19-25CrossRefGoogle Scholar
  5. 5.
    I.M. Low and Z. Oo, Reformation of Phase Composition in Decomposed Aluminium Titanate, Mater. Chem. Phys., 2008, 111(1), p 9-12CrossRefGoogle Scholar
  6. 6.
    I.M. Low and W.K. Pang, In Situ Diffraction Study of Self-Recovery in Vacuum Decomposed Al2TiO5, J. Aust. Ceram. Soc., 2013, 49(1), p 48-52Google Scholar
  7. 7.
    I.-M. Low and Z. Oo, In Situ Diffraction Study of Self-Recovery in Aluminum Titanate, J. Am. Ceram. Soc., 2008, 91(3), p 1027-1029CrossRefGoogle Scholar
  8. 8.
    R. Trache, L.-M. Berger, and C. Leyens, Comparison of Alumina-Titania Coatings Deposited by Plasma and HVOF Spray Techniques, in: Proc. Int. Thermal Spray Conf., May 21–23, 2014, Barcelona, Spain, DVS-Berichte Vol. 302, DVS Media GmbH, Düsseldorf, 2014, pp. 824-829.Google Scholar
  9. 9.
    L.-M. Berger, F.-L. Toma, S. Scheitz, R. Trache, and T. Börner, Thermally Sprayed Coatings in the System Al2O3-Cr2O3-TiO2—An Update, Materialwissenschaft und Werkstofftechnik, 2014, 45(6), p 465-475CrossRefGoogle Scholar
  10. 10.
    L.-M. Berger, Tribology of Thermally Sprayed Coatings in the Al2O3-Cr2O3-TiO2 System, in: Thermal Sprayed Coatings and their Tribological Performances, IGI Global, Hershey, PA, 2015, pp. 227-267.Google Scholar
  11. 11.
    P.V. Ananthapadmanabhan, T.K. Thiyagarajan, K.P. Sreekumar, R.U. Satpute, N. Venkatramani, and K. Ramachandran, Co-spraying of Alumina-Titania: Correlation of Coating Composition and Properties with Particle Behaviour in the Plasma Jet, Surf. Coat. Technol., 2003, 168(2-3), p 231-240CrossRefGoogle Scholar
  12. 12.
    K. Niemi, Abrasion Wear Characteristics of Thermally Sprayed Alumina Based Coatings, Doctoral Thesis, Tampere University of Technology, Tampere, 2009.Google Scholar
  13. 13.
    G. Shanmugavelayutham, V. Selvarajan, T.K. Thiyagarajan, P. Padmanabhan, K.P. Sreekumar, and R.U. Satpute, In-Flight Particle Behaviour and Its Effect on Co-spraying of Alumina-Titania, Curr. Appl. Phys., 2006, 6(1), p 41-47CrossRefGoogle Scholar
  14. 14.
    M. Wang and L.L. Shaw, Effects of the Powder Manufacturing Method on Microstructure and Wear Performance of Plasma Sprayed Alumina-Titania Coatings, Surf. Coat. Technol., 2007, 202(1), p 34-44CrossRefGoogle Scholar
  15. 15.
    L.-M. Berger, C.C. Stahr, F.-L. Toma, S. Saaro, M. Herrmann, D. Deska, G. Michael, and S. Thiele, Corrosion of Thermally Sprayed Oxide Ceramic Coatings (Korrosion thermisch gespritzter oxidkeramischer Schichten), Therm. Spray Bull., 2009, 2(1), p 40-56Google Scholar
  16. 16.
    F.-L. Toma, C.C. Stahr, L.-M. Berger, S. Saaro, M. Herrmann, D. Deska, and G. Michael, Corrosion Resistance of APS- and HVOF-Sprayed Coatings in the Al2O3-TiO2 System, J. Therm. Spray Technol., 2010, 19(1-2), p 137-147CrossRefGoogle Scholar
  17. 17.
    M. Herrmann, F.-L. Toma, L.-M. Berger, G. Kaiser, and C.C. Stahr, Comparative Study of the Corrosion Resistance of Thermally Sprayed Ceramic Coatings and Their Bulk Ceramic Counterparts, J. Eur. Ceram. Soc., 2014, 34(2), p 493-504CrossRefGoogle Scholar
  18. 18.
    F. Vargas, H. Ageorges, P. Fournier, P. Fauchais, and M.E. López, Mechanical and Tribological Performance of Al2O3-TiO2 Coatings Elaborated by Flame and Plasma Spraying, Surf. Coat. Technol., 2010, 205(4), p 1132-1136CrossRefGoogle Scholar
  19. 19.
    C.C. Palacio, H. Ageorges, F. Vargas, and A.F. Díaz, Effect of the Mechanical Properties on Drilling Resistance of Al2O3-TiO2 Coatings Manufactured by Atmospheric Plasma Spraying, Surf. Coat. Technol., 2013, 220, p 144-148CrossRefGoogle Scholar
  20. 20.
    K. Niemi, P. Vuoristo, and T. Mäntylä, Properties of Alumina-Based Coatings Deposited by Plasma Spray and Detonation Gun Spray Processes, J. Therm. Spray Technol., 1994, 3(2), p 199-203CrossRefGoogle Scholar
  21. 21.
    B. Normand, V. Fervel, C. Coddet, and V. Nikitine, Tribological Properties of Plasma Sprayed Alumina-Titania Coatings: Role and Control of the Microstructure, Surf. Coat. Technol., 2000, 123(2-3), p 278-287CrossRefGoogle Scholar
  22. 22.
    R. Tomaszek, L. Pawlowski, J. Zdanowski, J. Grimblot, and J. Laureyns, Microstructural Transformations of TiO2, Al2O3 + 13TiO2 and Al2O3 + 40TiO2 at Plasma Spraying and Laser Engraving, Surf. Coat. Technol., 2004, 185(2-3), p 137-149CrossRefGoogle Scholar
  23. 23.
    Z. Znamirowski, L. Pawlowski, T. Cichy, and W. Czarczynski, Low Macroscopic Field Electron Emission from Surface of Plasma Sprayed and Laser Engraved TiO2, Al2O3 + 13TiO2 and Al2O3 + 40TiO2 Coatings, Surf. Coat. Technol., 2004, 187(1), p 37-46CrossRefGoogle Scholar
  24. 24.
    H. Luo, P. Song, A. Khan, J. Feng, J.J. Zang, X.P. Xiong, J.G. Lü, and J.S. Lu, Alternant Phase Distribution and Wear Mechanical Properties of an Al2O3-40 wt%TiO2 Composite Coating, Ceram. Int., 2017, 43(9), p 7295-7304CrossRefGoogle Scholar
  25. 25.
    L.-M. Berger, Titanium Oxide—New Opportunities for an Established Coating Material, in: Thermal Spray Solutions: Advances in Technology and Applications, Proc. Int. Thermal Spray Conf., 2004, May 10–12, Osaka, Japan, ASM International, Materials Park/OH, pp. 934-945, also DVS-Verlag, Düsseldorf, CD-ROMGoogle Scholar
  26. 26.
    G. Åsbrink and A. Magnéli, X-ray Studies on Some Mixed Oxide Systems of Pseudobrookite Structure, Acta Chem. Scand., 1967, 21(7), p 1977CrossRefGoogle Scholar
  27. 27.
    T. Sperisen and A. Mocellin, On Structures of Mixed Titanium Aluminium Oxides, J. Mater. Sci. Lett., 1991, 10(14), p 831-833CrossRefGoogle Scholar
  28. 28.
    H.W. Hennicke and W. Lingenberg, Formation and Decomposition of Aluminium Titanate. II. Decomposition Reaction of Aluminium Titanate, Ceram. Forum Int. (CFI), 1986, 63(3), p 100-106Google Scholar
  29. 29.
    Bruker AXS, TOPAS V4: General Profile and Structure Analysis Software for Powder Diffraction Data, 2008.Google Scholar
  30. 30.
    D. Goberman, Y.H. Sohn, L. Shaw, E. Jordan, and M. Gell, Microstructure Development of Al2O3-13wt.%TiO2 Plasma Sprayed Coatings Derived from Nanocrystalline Powders, Acta Mater, 2002, 50(5), p 1141-1152CrossRefGoogle Scholar
  31. 31.
    R. Trache, L.-M. Berger, F.-L. Toma, S. Stahr, R.S. Lima, B.R. Marple, Electrical Resistivity of Thermally Sprayed Cr2O3-TiO2 Coatings, in: Proc. Int. Thermal Spray Conf., September 27–29, 2011, Hamburg, Germany, DVS-Berichte Vol. 276, Düsseldorf, DVS-Verlag GmbH, 2011, pp. 1030-1035.Google Scholar
  32. 32.
    B.H. Kear, Z. Kalman, R.K. Sadangi, G. Skandan, J. Colaizzi, and W.E. Mayo, Plasma-Sprayed Nanostructured Al2O3/TiO2 Powders and Coatings, J. Therm. Spray Technol., 2000, 9(4), p 483-487CrossRefGoogle Scholar
  33. 33.
    P. Ctibor, O. Roussel, and A. Tricoire, Unmelted Particles in Plasma Sprayed Coatings, J. Eur. Ceram. Soc., 2003, 23(16), p 2993-2999CrossRefGoogle Scholar
  34. 34.
    M. Mutter, G. Mauer, R. Mücke, O. Guillon, and R. Vaßen, Correlation of Splat Morphologies with Porosity and Residual Stress in Plasma-Sprayed YSZ Coatings, Surf. Coat. Technol., 2017, 318, p 157-169CrossRefGoogle Scholar
  35. 35.
    G. Darut, E. Klyatskina, S. Valette, P. Carles, A. Denoirjean, G. Montavon, H. Ageorges, F. Segovia, and M. Salvador, Architecture and Phases Composition of Suspension Plasma Sprayed Alumina-Titania Sub-micrometer-sized Coatings, Mater. Lett., 2012, 67(1), p 241-244CrossRefGoogle Scholar
  36. 36.
    R.D. Skala, D. Li, and I.M. Low, Diffraction, Structure and Phase Stability Studies on Aluminium Titanate, J. Eur. Ceram. Soc., 2009, 29(1), p 67-75CrossRefGoogle Scholar
  37. 37.
    S.T. Norberg, S. Hoffmann, M. Yoshimura, and N. Ishizawa, Al6Ti2O13, A New Phase in the Al2O3-TiO2 System, Acta Crystallogr. Sect. C Cryst. Struct. Commun., 2005, 61(3), p i35-i38CrossRefGoogle Scholar
  38. 38.
    M.-H. Berger and A. Sayir, Directional Solidification of Al2O3-Al2TiO5 System, J. Eur. Ceram. Soc., 2008, 28(12), p 2411-2419CrossRefGoogle Scholar
  39. 39.
    F. Remy, O. Monnereau, A. Casalot, F. Dahan, and J. Galy, Titane à valence mixte, un nouvel oxyde ternaire: Al2Ti7O15, J. Solid State Chem., 1988, 76(1), p 167-177CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.Fraunhofer IKTS, Fraunhofer Institute for Ceramic Technologies and SystemsDresdenGermany
  2. 2.Forschungszentrum Jülich GmbH, Institute of Energy and Climate ResearchIEK-1: Materials Synthesis and ProcessingJülichGermany

Personalised recommendations