The Effect of Various Stoichiometric Strontium Aluminates on the High-Temperature Tribological Properties of NiCr-Al2O3 Composites

Abstract

The effect of multiple stoichiometric strontium aluminates (Sr4Al14O25, SrAl12O19, and Sr4Al2O7) on the tribological properties of NiCr-Al2O3 composites was investigated between room temperature and 800 °C. The results indicated that the synergistic interaction of multiple stoichiometric strontium aluminates played an important role in the improvement in the friction and wear performance at elevated temperatures. Satisfactory tribological properties were observed for the synergistic lubricating film consisting of Sr4Al14O25, SrAl12O19, and oxides (NiO, Cr2O3, and NiCr2O4) on the worn surface above 600 °C, compared to those for the tribofilm containing Sr4Al14O25, SrAl12O19, Sr4Al2O7, SrCrO4, and oxides. Furthermore, the low friction coefficient and wear rate were attributed to the formation of Sr4Al14O25, Sr4Al2O7, SrCrO4, and oxides on the rubbing surface at 800 °C.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    H. Torres, M. Rodríguez Ripoll, and B. Prakash, Tribological Behaviour of Self-lubricating Materials at High Temperatures, Int. Mater. Rev., 2018, 63, p 309–340

    CAS  Article  Google Scholar 

  2. 2.

    S. Zhu, J. Cheng, Z. Qiao, and J. Yang, High Temperature Solid-Lubricating Materials: A Review, Tribol. Int., 2019, 133, p 206–223

    CAS  Article  Google Scholar 

  3. 3.

    M. Kotkowiak, A. Piasecki, and M. Kulka, The Influence of Solid Lubricant on Tribological Properties of Sintered Ni-20%CaF2 Composite Material, Ceram. Int., 2019, 45, p 17103–17113

    CAS  Article  Google Scholar 

  4. 4.

    S. Cao, J. Zhou, L. Wang, Y. Yu, and B. Xin, Microstructure, Mechanical and Tribological Property of Multi-components Synergistic Self-lubricating NiCoCrAl Matrix Composite, Tribol. Int., 2019, 131, p 508–519

    CAS  Article  Google Scholar 

  5. 5.

    T.R. Prabhu, M. Arivarasu, Y. Chodancar, N. Arivazhagan, G. Sumanth, and R.K. Mishra, Tribological Behaviour of Graphite-Reinforced FeNiCrCuMo High-Entropy Alloy Self-lubricating Composites for Aircraft Braking Energy Applications, Tribol. Lett., 2019, 67, p 78

    Article  Google Scholar 

  6. 6.

    G. Cui, H. Liu, S. Li, G. Gao, and Z. Kou, Design and High-Temperature Tribological Properties of CoCrW with Rare Earth Fluoride Composites, J. Mater. Res. Technol., 2020, 9, p 2402–2411

    CAS  Article  Google Scholar 

  7. 7.

    X.J. Yuan, X.H. Chen, B.L. Zha, and Z.H. Yu, Structural and Tribological Performance of Solid NiCr-WSe2-BaF2·CaF2-Y-hBN and NiCr-WSe2-BaF2·CaF2-Y Lubricant Coatings Produced by Atmospheric Plasma Spray, Tribol. Trans., 2017, 60, p 208–216

    CAS  Article  Google Scholar 

  8. 8.

    C.H. Ding, P.L. Li, G. Ran, Y.W. Tian, and J.N. Zhou, Tribological Property of Self-lubricating PM304 Composite, Wear, 2007, 262, p 575–581

    CAS  Article  Google Scholar 

  9. 9.

    F. Findik, Latest progress on tribological properties of industrial materials, Mater. Des., 2014, 57, p 218–244

    CAS  Article  Google Scholar 

  10. 10.

    N. Altinkok, I. Oezsert, and F. Findik, Dry Sliding Wear Behavior of Al2O3/SiC Particle Reinforced Aluminium Based MMCs Fabricated by Stir Casting Method, Acta Phys. Polonica, 2013, 124, p 11–19

    CAS  Article  Google Scholar 

  11. 11.

    H. Zhao, L. Luo, F. Guo, X. Zhao, and P. Xiao, High-Temperature Tribological Behavior of Mo and BaF2 Added Cr3C2-NiCr Matrix Composite, Ind. Lubric. Tribol., 2019, 72, p 136–145

    Article  Google Scholar 

  12. 12.

    A. Sabahi Namini, S.A.A. Dilawary, A. Motallebzadeh, and Asl M. Shahedi, Effect of TiB2 Addition on the Elevated Temperature Tribological Behavior of Spark Plasma Sintered Ti Matrix Composite, Compos. B Eng., 2019, 172, p 271–280

    CAS  Article  Google Scholar 

  13. 13.

    X. Li, J. Liang, T. Shi, D. Yang, X. Chen, C. Zhang et al., Tribological Behaviors of Vacuum Hot-Pressed Ceramic Composites with Enhanced Cyclic Oxidation and Corrosion Resistance, Ceram. Int., 2020, 46, p 12911–12920

    CAS  Article  Google Scholar 

  14. 14.

    X. Feng, J. Jia, Q. Gao, C. Lu, J. Yang, P. Shi et al., Regeneration Mechanisms of Silver Niobate in NiAl Composites with Respective Addition of AgNbO3 and Ag/Nb2O5 at Elevated Temperatures Sliding, Tribol. Int., 2021, 153, p 106623

    CAS  Article  Google Scholar 

  15. 15.

    X. Dai, M. Wen, J. Wang, X. Cui, X. Wang, and K. Zhang, The Tribological Performance at Elevated Temperatures of MoNbN-Ag Coatings, Appl. Surf. Sci., 2020, 509, p 145372

    CAS  Article  Google Scholar 

  16. 16.

    P. Ren, K. Zhang, X. He, S. Du, X. Yang, T. An et al., Toughness Enhancement and Tribochemistry of the Nb-Ag-N Films Actuated by Solute Ag, Acta Mater., 2017, 137, p 1–11

    CAS  Article  Google Scholar 

  17. 17.

    S. Zhu, H. Tan, J. Cheng, Y. Yu, Z. Qiao, and J. Yang, Nickel Aluminum Matrix Solid-Lubricating Composite Lubricated by Silver and Silver Vanadate Formed by Tribochemistry at Elevated Temperature, J. Tribol., 2019, 2019, p 141

    Google Scholar 

  18. 18.

    S.M. Aouadi, D.P. Singh, D.S. Stone, K. Polychronopoulou, F. Nahif, C. Rebholz et al., Adaptive VN/Ag Nanocomposite Coatings with Lubricious Behavior from 25 to 1000 C, Acta Mater., 2010, 58, p 5326–5331

    CAS  Article  Google Scholar 

  19. 19.

    Y. Mu, M. Liu, Y. Wang, and E. Liu, PVD Multilayer VN-VN/Ag Composite Coating with Adaptive Lubricious Behavior from 25 to 700 °C, RSC Adv., 2016, 6, p 53043–53053

    CAS  Article  Google Scholar 

  20. 20.

    H. Ju, N. Ding, J. Xu, L. Yu, Y. Geng, and F. Ahmed, The Tribological Behavior of Niobium Nitride and Silver Composite Films at Elevated Testing Temperatures, Mater. Chem. Phys., 2019, 237, p 121840

    CAS  Article  Google Scholar 

  21. 21.

    X. Feng, C. Lu, J. Jia, J. Xue, Q. Wang, Y. Sun et al., High Temperature Tribological Behaviors and Wear Mechanisms of NiAl-NbC-Ag Composites Formed by In Situ Decomposition of AgNbO3, Tribol. Int., 2020, 141, p 105898

    CAS  Article  Google Scholar 

  22. 22.

    B. Li, Y. Gao, X. Hou, C. Li, H. Guo, Y. Kang et al., Microstructure, Mechanical and Tribological Properties of NiAl Matrix Composites with Addition of BaO/TiO2 Binary Oxides, Tribol. Int., 2020, 144, p 106108

    CAS  Article  Google Scholar 

  23. 23.

    F. Liu, L. Feng, H. Liu, and W. Zhao, High-Temperature Tribological Performance of Vacuum Hot-Pressed NiCr Matrix Composite Containing SrAl12O19, J. Mater. Eng. Perform., 2020, 29, p 470–479

    CAS  Article  Google Scholar 

  24. 24.

    F. Liu, Y. Zhou, X. Zhang, W. Cao, and J. Jia, Tribological Properties of NiCr-ZrO2(Y2O3)-SrSO4 Composites at Elevated Temperatures, Ceram. Int., 2016, 42, p 12981–12987

    CAS  Article  Google Scholar 

  25. 25.

    F. Liu, G.W. Yi, W.Z. Wang, Y. Shan, and J.H. Jia, The Influence of SrSO4 on the Tribological Properties of NiCr-Al2O3 Cermet at Elevated Temperatures, Ceram. Int., 2014, 40, p 2799–2807

    CAS  Article  Google Scholar 

  26. 26.

    F. Liu, G.W. Yi, W.Z. Wang, Y. Shan, and J.H. Jia, Tribological Properties of NiCr-Al2O3 Cermet-Based Composites with Addition of Multiple-Lubricants at Elevated Temperatures, Tribol. Int., 2013, 67, p 164–173

    CAS  Article  Google Scholar 

  27. 27.

    F. Liu and J.H. Jia, Tribological Properties and Wear Mechanisms of NiCr-Al2O3-SrSO4-Ag Self-Lubricating Composites at Elevated Temperatures, Tribol. Lett., 2013, 49, p 281–290

    CAS  Article  Google Scholar 

  28. 28.

    F. Liu, J. Ren, H. Liu, W. Zhao, X. Zhang, and W. Cao, Tribological Properties of In Situ-Fabricated NiCr-Al2O3 Composites with SrAl4O7 and SrO at Elevated Temperatures, J. Mater. Eng. Perform., 2020, 29, p 6670–6680

    Article  Google Scholar 

  29. 29.

    M.L. Capron and A. Douy, Strontium Dialuminate SrAl4O7: Synthesis and Stability, J. Am. Ceram. Soc., 2002, 85, p 3036–3040

    CAS  Article  Google Scholar 

  30. 30.

    R. Khanna and B. Basu, Sliding Wear Properties of Self-Mated Yttria-Stabilized Tetragonal Zirconia Ceramics in Cryogenic Environment, J. Am. Ceram. Soc., 2007, 90, p 2525–2534

    CAS  Article  Google Scholar 

  31. 31.

    L. Chen, S. Xue, X. Chen, A. Bahader, X. Deng, E. Zhao et al., The Site Occupation and Valence of Mn Ions in the Crystal Lattice of Sr4Al14O25 and Its Deep Red Emission for High Color-Rendering White Light-Emitting Diodes, Mater. Res. Bull., 2014, 60, p 604–611

    CAS  Article  Google Scholar 

  32. 32.

    Y. Xu, W. Peng, S. Wang, X. Xiang, and P. Lu, Synthesis of SrAl12O19 Via Citric Acid Precursor, Mater. Sci. Eng. B, 2005, 123, p 139–142

    Article  Google Scholar 

  33. 33.

    S.J. Kim, H.I. Won, N. Hayk, C.W. Won, D.Y. Jeon, and A.G. Kirakosyan, Preparation and Characterization of Sr4Al2O7:Eu3+, Eu2+ Phosphors, Mater. Sci. Eng. B, 2011, 176, p 1521–1525

    CAS  Article  Google Scholar 

  34. 34.

    M. Bukhtiyarova, A. Ivanova, E. Slavinskaya, P. Kuznetsov, L. Plyasova, O. Stonkus et al., Steam Reforming of Methane Over Ni-Substituted Sr Hexaaluminates, Catal. Sustain. Energy, 2012, 2012, p 11–21

    Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Grant No. 51505378) and the Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2017JM5101).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Feng Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Ren, J., Liu, H. et al. The Effect of Various Stoichiometric Strontium Aluminates on the High-Temperature Tribological Properties of NiCr-Al2O3 Composites. J. of Materi Eng and Perform (2021). https://doi.org/10.1007/s11665-021-05537-2

Download citation

Keywords

  • different stoichiometric strontium aluminate
  • elevated temperatures
  • synergistic lubricating
  • tribological properties