Understanding the Effect of Nanosized NbC Precipitates on the Stress Corrosion Cracking of High-Strength Low-Alloy Steel in a Simulated Deep-Sea Environment


The effect of nanosized NbC precipitates on the stress corrosion cracking (SCC) of high-strength low-alloy (HSLA) steel in a simulated deep-sea environment was studied through electrochemical tests, hydrogen permeation tests and slow strain rate tension (SSRT) tests. The results show that in a simulated deep-sea environment, the presence of nanosized NbC precipitates significantly decreases electrochemical corrosion and SCC susceptibility. Nanosized NbC precipitates increased the amount of irreversible and reversible hydrogen traps, which pinned the hydrogen induced by the hydrogen evolution reaction, and weakened the effect of hydrogen on the AD and HE during SCC of HSLA steel. In addition, whether in deep- or shallow-sea environments, nanosized NbC precipitates improved the SCC resistance of HSLA steel by means of the hydrogen-trapping and microstructural optimization effect, but the microstructural optimization played a minor role. Once the steels were with higher hydrogen concentration, the hydrogen-trapping function of NbC precipitates increased, which resulted in larger SCC resistance improvement.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    S.W. Thompson, Interrelationships Between Yield Strength, Low-Temperature Impact Toughness, and Microstructure in Low-Carbon, Copper-Precipitation-Strengthened, High-Strength Low-Alloy Plate Steels, Mater. Sci. Eng. A, 2018, 711, p 424–433.

    CAS  Article  Google Scholar 

  2. 2.

    Z.J. Xie, X.P. Ma, C.J. Shang, X.M. Wang, and S.V. Subramanian, Nano-Sized Precipitation and Properties of a Low Carbon Niobium Micro-Alloyed Bainitic Steel, Mater. Sci. Eng. A, 2015, 641, p 37–44.

    CAS  Article  Google Scholar 

  3. 3.

    J. Jia, X. Cheng, X. Yang, X. Li, and W. Li, A Study for Corrosion Behavior of a New-Type Weathering Steel Used in Harsh Marine Environment, Constr. Build. Mater., 2020, 259, p 119760.

    CAS  Article  Google Scholar 

  4. 4.

    X. Li, L. Shi, Y. Liu, K. Gan, and C. Liu, Achieving a Desirable Combination of Mechanical Properties in HSLA Steel Through Step Quenching, Mater. Sci. Eng. A, 2020, 772, p 138683.

    CAS  Article  Google Scholar 

  5. 5.

    Y. Shao, C. Liu, Z. Yan, H. Li, and Y. Liu, Formation Mechanism and Control Methods of Acicular Ferrite in HSLA Steels: A Review, J. Mater. Sci. Technol., 2018, 34(5), p 737–744.

    Article  Google Scholar 

  6. 6.

    H. Wan, C. Du, Z. Liu, D. Song, and X. Li, The Effect of Hydrogen on Stress Corrosion Behavior of X65 Steel Welded Joint in Simulated Deep Sea Environment, Ocean Eng., 2016, 114, p 216–223.

    Article  Google Scholar 

  7. 7.

    Y. Yang, C. Jiang, X.Q. Cheng, J.B. Zhao, B.J. Zhao, and X.G. Li, Effect of Sb on the Corrosion Behavior of Low-Alloy Steels in a Simulated Polluted Marine Atmosphere, J. Mater. Eng. Perform., 2020, 29, p 2648–2657.

    CAS  Article  Google Scholar 

  8. 8.

    B. Sun, X. Zuo, X. Cheng et al., The Role of Chromium Content in the Long-Term Atmospheric Corrosion Process, npj Mater. Degrad., 2020, 4(37), p 1–9.

    CAS  Google Scholar 

  9. 9.

    L. Wang, J. Xin, L. Cheng, K. Zhao, B. Sun, J. Li, X. Wang, and Z. Cui, Influence of Inclusions on Initiation of Pitting Corrosion and Stress Corrosion Cracking of X70 Steel in Near-Neutral pH Environment, Corros. Sci., 2019, 147, p 108–127.

    CAS  Article  Google Scholar 

  10. 10.

    H. Tian, J. Xin, Y. Li, X. Wang, and Z. Cui, Combined Effect of Cathodic Potential and Sulfur Species on Calcareous Deposition, Hydrogen Permeation, and Hydrogen Embrittlement of a Low Carbon Bainite Steel in Artificial Seawater, Corros. Sci., 2019, 158, p 108089.

    CAS  Article  Google Scholar 

  11. 11.

    W. Wu, Z. Liu, X. Li, and C. Du, Electrochemical Characteristic and Stress Corrosion Behavior of API X70 High-Strength Pipeline Steel Under a Simulated Disbonded Coating in an Artificial Seawater Environment, J. Electroanal. Chem., 2019, 845, p 92–105.

    CAS  Article  Google Scholar 

  12. 12.

    Q. Zhao, J. Zhao, X. Cheng, Y. Huang, L. Lu, and X. Li, Galvanic Corrosion of the Anodized 7050 Aluminum Alloy Coupled with the Low Hydrogen Embrittlement Cd Ti Plated 300M Steel in an Industrial-Marine Atmospheric Environment, Surf. Coat. Technol., 2020, 382, p 125171.

    CAS  Article  Google Scholar 

  13. 13.

    J.P. Carrasco, D.D. Silva Diniz, J.M. Andrade Barbosa, A.A. Silva, and M. Antonio dos Santos, Numerical Simulation of the Hydrogen Trapping Effect on Crack Propagation in API 5CT P110 Steel Under Cathodic Overprotection, Int. J. Hydrogen Energy, 2019, 44(5), p 3230–3239.

    CAS  Article  Google Scholar 

  14. 14.

    H.Q. Yang, Q. Zhang, S.S. Tu, Y.M. Li, Y. Wang, and Y. Huang, A Study on Effects of Mechanical Stress and Cathodic Protection on Marine Coatings on Mild Steel in Artificial Seawater, J. Mater. Eng. Perform., 2016, 25, p 3863–3879.

    CAS  Article  Google Scholar 

  15. 15.

    A. Drach, I. Tsukrov, J. DeCew, J. Aufrecht, A. Grohbauer, and U. Hofmann, Field Studies of Corrosion Behaviour of Copper Alloys in Natural Seawater, Corros. Sci., 2013, 76, p 453–464.

    CAS  Article  Google Scholar 

  16. 16.

    R.E. Melchers, Effect of Immersion Depth on Marine Corrosion of Mild Steel, Corrosion, 2005, 61(9), p 895–906.

    CAS  Article  Google Scholar 

  17. 17.

    R. Venkatesan, M.A. Venkatasamy, T.A. Bhaskaran, E.S. Dwarakadasa, and M. Ravindran, Corrosion of Ferrous Alloys in Deep Sea Environments, Br. Corros. J., 2013, 37(4), p 257–266.

    Article  CAS  Google Scholar 

  18. 18.

    R. Liu, Y. Cui, L. Liu, B. Zhang, and F. Wang, A Primary Study of the Effect of Hydrostatic Pressure on Stress Corrosion Cracking of Ti-6Al-4V Alloy in 3.5% NaCl Solution, Corros. Sci., 2020, 165, p 108402.

    CAS  Article  Google Scholar 

  19. 19.

    F. Sun, S. Ren, Z. Li, Z. Liu, X. Li, and C. Du, Comparative Study on the Stress Corrosion Cracking of X70 Pipeline Steel in Simulated Shallow and Deep Sea Environments, Mater. Sci. Eng. A, 2017, 685, p 145–153.

    CAS  Article  Google Scholar 

  20. 20.

    Z.X. Yang, B. Kan, J.X. Li, Y.J. Su, and L.J. Qiao, Hydrostatic Pressure Effects on Stress Corrosion Cracking of X70 Pipeline Steel in a Simulated Deep-Sea Environment, Int. J. Hydrogen Energy, 2017, 42(44), p 27446–27457.

    CAS  Article  Google Scholar 

  21. 21.

    P. Gong, E.J. Palmiere, and W.M. Rainforth, Dissolution and Precipitation Behaviour in Steels Microalloyed with Niobium During Thermomechanical Processing, Acta Mater., 2015, 97, p 392–403.

    CAS  Article  Google Scholar 

  22. 22.

    X.L. Cai, L.S. Zhong, and Y.H. Xu, Mechanical Properties and Tribological Behavior of In Situ NbC/Fe Surface Composites, J. Mater. Eng. Perform., 2017, 26, p 292–299.

    CAS  Article  Google Scholar 

  23. 23.

    X. Chen, G. Qiao, X. Han, X. Wang, F. Xiao, and B. Liao, Effects of Mo, Cr and Nb on Microstructure and Mechanical Properties of Heat Affected Zone for Nb-Bearing X80 Pipeline Steels, Mater. Des., 2014, 53, p 888–901.

    CAS  Article  Google Scholar 

  24. 24.

    S. Jeng, H. Lee, J. Huang, and R. Kuo, Effects of Nb on the Microstructure and Elevated-Temperature Mechanical Properties of Alloy 690-SUS 304L Dissimilar Welds, Mater. Trans., 2008, 49(6), p 1270–1277.

    CAS  Article  Google Scholar 

  25. 25.

    V. Javaheri, F. Shahri, M. Mohammadnezhad, M. Tamizifar, and M. Naseri, The Effect of Nb and Ti on Structure and Mechanical Properties of 12Ni-25Cr-0.4C Austenitic Heat-Resistant Steel After Aging at 900 °C for 1000 h, J. Mater. Eng. Perform., 2014, 23, p 3558–3566.

    CAS  Article  Google Scholar 

  26. 26.

    Y.S. Chen, H.Z. Lu, J.T. Liang et al., Observation of Hydrogen Trapping at Dislocations, Grain Boundaries, and Precipitates, Science, 2020, 367, p 171–175.

    CAS  Article  Google Scholar 

  27. 27.

    S. Zhang, J. Wan, Q. Zhao, J. Liu, F. Huang, Y. Huang, and X. Li, Dual Role of Nanosized NbC Precipitates in Hydrogen Embrittlement Susceptibility of Lath Martensitic Steel, Corros. Sci., 2020, 164, p 108345.

    CAS  Article  Google Scholar 

  28. 28.

    S. Zhang, E. Fan, J. Wan, J. Liu, Y. Huang, and X. Li, Effect of Nb on the Hydrogen-Induced Cracking of High-Strength Low-Alloy Steel, Corros. Sci., 2018, 139, p 83–96.

    CAS  Article  Google Scholar 

  29. 29.

    S. Zhang, Q. Zhao, J. Liu, F. Huang, Y. Huang, and X. Li, Understanding the Effect of Niobium on Hydrogen-Induced Blistering in Pipeline Steel: A Combined Experimental and Theoretical Study, Corros. Sci., 2019, 159, p 108142.

    CAS  Article  Google Scholar 

  30. 30.

    W. Wu, Z. Liu, Q. Wang, and X. Li, Improving the Resistance of High-Strength Steel to SCC in a SO2-Polluted Marine Atmosphere Through Nb and Sb Microalloying, Corros. Sci., 2020, 170, p 108693.

    CAS  Article  Google Scholar 

  31. 31.

    Q. Qiao, L. Lu, E. Fan, J. Zhao, Y. Liu, G. Peng, Y. Huang, and X. Li, Effects of Nb on Stress Corrosion Cracking of High-Strength Low-Alloy Steel in Simulated Seawater, Int. J. Hydrogen Energy, 2019, 44(51), p 27962–27973.

    CAS  Article  Google Scholar 

  32. 32.

    I. Flis-Kabulska, T. Zakroczymski, and J. Flis, Accelerated Entry of Hydrogen Into Iron from NaOH Solutions at Low Cathodic and low anodic polarisations, Electrochim. Acta, 2007, 52(9), p 2966–2977.

    CAS  Article  Google Scholar 

  33. 33.

    Q. Cui, J. Wu, D. Xie, X. Wu, Y. Huang, and X. Li, Effect of Nanosized NbC Precipitates on Hydrogen Diffusion in X80 Pipeline Steel, Materials, 2017, 10(7), p 721.

    Article  CAS  Google Scholar 

  34. 34.

    S.K. Yen and I.B. Huang, Critical Hydrogen Concentration for Hydrogen-Induced Blistering on AISI 430 Stainless Steel, Mater. Chem. Phys., 2003, 80(3), p 662–666.

    CAS  Article  Google Scholar 

  35. 35.

    C.F. Dong, Z.Y. Liu, X.G. Li, and Y.F. Cheng, Effects of Hydrogen-Charging on the Susceptibility of X100 Pipeline Steel to Hydrogen-Induced Cracking, Int. J. Hydrogen Energy, 2009, 34(24), p 9879–9884.

    CAS  Article  Google Scholar 

  36. 36.

    D.C. Cook, Spectroscopic Identification of Protective and Non-protective Corrosion Coatings on Steel Structures in Marine Environments, Corros. Sci., 2005, 47(10), p 2550–2570.

    CAS  Article  Google Scholar 

  37. 37.

    A.G. Kostryzhev, P. Mannan, and O.O. Marenych, High Temperature Dislocation Structure and NbC Precipitation in Three Ni-Fe-Nb-C Model Alloys, J. Mater. Sci., 2015, 50(21), p 7115–7125.

    CAS  Article  Google Scholar 

  38. 38.

    S. Lu, S. Wei, D. Li, and Y. Li, Effects of Heat Treatment Process and Niobium Addition on the Microstructure and Mechanical Properties of low Carbon Steel Weld Metal, J. Mater. Sci., 2010, 45(9), p 2390–2402.

    CAS  Article  Google Scholar 

  39. 39.

    M.L. Doche, J.Y. Hihn, A. Mandroyan, R. Viennet, and F. Touyeras, Influence of Ultrasound Power and Frequency Upon Corrosion Kinetics of Zinc in Saline Media, Ultrason. Sonochem., 2003, 10(6), p 357–362.

    CAS  Article  Google Scholar 

  40. 40.

    J. Tang, Y. Shao, T. Zhang, G. Meng, and F. Wang, Corrosion Behaviour of Carbon Steel in Different Concentrations of HCl Solutions Containing H2S at 90°C, Corros. Sci., 2011, 53(5), p 1715–1723.

    CAS  Article  Google Scholar 

  41. 41.

    G.Z. Meng, C. Zhang, and Y.F. Cheng, Effects of Corrosion Product Deposit on the Subsequent Cathodic and Anodic Reactions of X-70 Steel in Near-Neutral pH Solution, Corros. Sci., 2008, 50(11), p 3116–3122.

    CAS  Article  Google Scholar 

  42. 42.

    J. Li, J. Wu, Z. Wang, S. Zhang, X. Wu, Y. Huang, and X. Li, The Effect of Nanosized NbC Precipitates on Electrochemical Corrosion Behavior of High-Strength Low-Alloy Steel in 3.5%NaCl Solution, Int. J. Hydrogen Energy, 2017, 42(34), p 22175–22184.

    CAS  Article  Google Scholar 

  43. 43.

    X.L. Xiong, H.X. Ma, X. Tao, J.X. Li, Y.J. Su, Q.J. Zhou, and A.A. Volinsky, Hydrostatic Pressure Effects on the Kinetic Parameters of Hydrogen Evolution and Permeation in Armco Iron, Electrochim. Acta, 2017, 255, p p230-238.

    Article  CAS  Google Scholar 

  44. 44.

    X.L. Xiong, X. Tao, Q.J. Zhou, J.X. Li, A.A. Volinsky, and Y.J. Su, Hydrostatic Pressure Effects on Hydrogen Permeation in A514 Steel During Galvanostatic Hydrogen Charging, Corros. Sci., 2016, 112, p 86–93.

    CAS  Article  Google Scholar 

  45. 45.

    E.D. Fan, S.Q. Zhang, D.H. Xie et al., Effect of Nanosized NbC Precipitates on Hydrogen Induced Cracking, Int. J. Miner. Metall. Mater., 2020 https://doi.org/10.1007/s12613-020-2167-0

    Article  Google Scholar 

  46. 46.

    G.M. Pressouyre, A Classification of Hydrogen Traps in Steel, Metall. Trans. A, 1979, 10(10), p 1571–1573.

    Article  Google Scholar 

  47. 47.

    P. Castaño Rivera, V.P. Ramunni, and P. Bruzzoni, Hydrogen Trapping in an API 5L X60 Steel, Corros. Sci., 2012, 54, p 106–118.

    Article  CAS  Google Scholar 

  48. 48.

    A. Turnbull and S. Zhou, Pit to Crack Transition in Stress Corrosion Cracking of a Steam Turbine Disc Steel, Corros. Sci., 2004, 46(5), p 1239–1264.

    CAS  Article  Google Scholar 

  49. 49.

    B. Gu, J. Luo, and X. Mao, Hydrogen-Facilitated Anodic Dissolution-Type Stress Corrosion Cracking of Pipeline Steels in Near-Neutral pH Solution, Corrosion, 1999, 55(1), p 96–106.

    CAS  Article  Google Scholar 

Download references


The authors wish to acknowledge the financial support of the National Key Research and Development Program of China (No. 2016YFB0300604), the National Natural Science Foundation of China (Nos. 51971033, 51471033) and the National Materials Corrosion and Protection Data Center.

Author information



Corresponding authors

Correspondence to Yunhua Huang or Xiaogang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Fan, E., Wang, S. et al. Understanding the Effect of Nanosized NbC Precipitates on the Stress Corrosion Cracking of High-Strength Low-Alloy Steel in a Simulated Deep-Sea Environment. J. of Materi Eng and Perform (2021). https://doi.org/10.1007/s11665-021-05532-7

Download citation


  • hydrogen
  • HSLA steel
  • nanosized NbC precipitates
  • SCC
  • simulated deep-sea environment