Effect of Deposition Strategies on the Microstructure and Tensile Properties of Wire Arc Additive Manufactured Al-5Si Alloys


4043 Al-5Si alloy components were fabricated by wire and arc additive manufacturing based on cold metal transfer (WAAM-CMT). Three deposition strategies, i.e. the method of building the layers and tracks (Line 90°, Cycle line 90°, and Line 45°), were employed during the process, and their impact on the microstructure and tensile properties of the deposited Al-5Si alloy was evaluated. Results showed that the samples with different deposition strategies exhibited similar phase composition (α-Al, Si phase, and Al9Si phase), but various deposited layer size, grain size, and Si morphology owing to different deposition strategies. Recrystallization was observed in all deposition processes. The average micro-hardness was ~ 52.3 Hv, yield strength (YS) varied between 130 and 150 MPa, ultimate tensile strength (UTS) changed between 200 and 230 MPa and elongation (EL) ranged between 10 and 12%. Based on the fractographic analysis, the fracture mechanism was identified to be due to the presence of numbers of sharp-angled defects like cracks and chain-like micro-pores.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    T. Dursun and C. Soutis, Recent Developments in Advanced Aircraft Aluminium Alloys, Mater. Des, 2014, 56, p 862–871.

    CAS  Article  Google Scholar 

  2. 2.

    V. Sankar and S. Muthu, Investigation of Microstructure and Mechanical Behavior of AlSi7Mg, J. Appl. Sci., 2014, 14, p 811–816.

    CAS  Article  Google Scholar 

  3. 3.

    F. Trevisan, F. Calignano, M. Lorusso, J. Pakkanen, A. Aversa, E.P. Ambrosio, M. Lombardi, P. Fino and D. Manfredi, On the Selective Laser Melting (SLM) of the AlSi10Mg Alloys Process, Microstructure, and Mechanical Properties, Material, 2017, 10, p 76.

    Article  Google Scholar 

  4. 4.

    J. Li, X. Cheng, Z. Li, X. Zong, X.H. Chen, S.Q. Zhang and H.M. Wang, Microstructures and Mechanical Properties of Laser Additive Manufactured Al-5Si-1Cu-Mg Alloy with Different Layer Thicknesses, J. Alloys Compd, 2019, 789, p 15–24.

    CAS  Article  Google Scholar 

  5. 5.

    S.W. Williams, F. Martina, A.C. Addison, J. Ding, G. Pardal and P. Colegrove, Wire+ Arc Additive Manufacturing, Mater. Sci. Tech-lond, 2016, 32, p 641–647.

    CAS  Article  Google Scholar 

  6. 6.

    X.Z. Chen, C.C. Su, Y.F. Wang, A.N. Siddiquee, S. Konovalov, S. Jayalakshmi and R.A. Singh, Cold Metal Transfer (CMT) Based Wire and Arc Additive Manufacture (WAAM) System, J. Surf. Invest. X-Ray. Synchrotron Neutron Tech, 2018, 12, p 1278–1284.

    Article  Google Scholar 

  7. 7.

    Q.F. Yang, C.J. Xia, Y.Q. Deng, X.F. Li and H.W. Wang, Microstructure and Mechanical Properties of AlSi7Mg0.6 Aluminum Alloy Fabricated by Wire and Arc Additive Manufacturing Based on Cold Metal Transfer WAAM-CMT, Material, 2019, 12, p 2525.

    CAS  Article  Google Scholar 

  8. 8.

    A. Gomez Ortega, L. Corona Galvan, F. Deschaux-Beaume, B. Mezrag and S. Rouquette, Effect of Process Parameters on the Quality of Aluminium Alloy Al5Si Deposits in Wire and Arc Additive Manufacturing Using a Cold Metal Transfer Process, Sci. Technol. Weld. Join, 2018, 23, p 316–332.

    CAS  Article  Google Scholar 

  9. 9.

    N.O. Larrosa, W. Wang, N. Read, M.H. Loretto, C. Evans, J. Carr, U. Tradowsky, M.M. Attallah and P.J. Withers, Linking Microstructure and Processing Defects to Mechanical Properties of Selectively Laser Melted AlSi10Mg alloy, Theor. Appl. Fract. Mech, 2018, 98, p 123–133.

    CAS  Article  Google Scholar 

  10. 10.

    C.C. Zhang, H.H. Zhu, Z.H. Hu, L. Zhang and X.Y. Zeng, A Comparative Study on Single-laser and Multi-laser Selective Laser Melting AlSi10Mg: Defects, Microstructure and Mechanical Properties, Mater. Sci. Eng. A, 2019, 746, p 416–423.

    CAS  Article  Google Scholar 

  11. 11.

    X. Liu, C.C. Zhao, X. Zhou, Z.J. Shen and W. Liu, Microstructure of Selective Laser Melted AlSi10Mg alloy, Mater. Des, 2019, 168, p 107677.

    CAS  Article  Google Scholar 

  12. 12.

    T. Kimura and T. Nakamoto, Microstructures and Mechanical Properties of A356 (AlSi7Mg0.3) Aluminum Alloy Fabricated by Selective Laser Melting, Mater. Des, 2016, 89, p 1294–1301.

    CAS  Article  Google Scholar 

  13. 13.

    J. Guan, Y. Jiang, X. Zhang, X.W. Zhang and X.Y. Chong, Microstructural Evolution and EBSD Analysis of AlSi10Mg Alloy Fabricated by Selective Laser Remelting, Mater. Charact., 2020, 12, p 110079.

    Article  Google Scholar 

  14. 14.

    K.G. Prashanth, S. Scudino and J. Eckert, Defining the Tensile Properties of Al-12Si Parts Produced by Selective Laser Melting, Acta Mater, 2017, 126, p 25–35.

    CAS  Article  Google Scholar 

  15. 15.

    A.S. Haselhuhn, M.W. Buhr, B. Wijnen, P.G. Sanders and J.M. Pearce, Structure-property Relationships of Common Aluminum Weld Alloys Utilized as Feedstock for GMAW-Based 3-D Metal Printing, Mater. Sci. Eng. A, 2016, 673, p 511–523.

    CAS  Article  Google Scholar 

  16. 16.

    H.J. Wang, W.H. Jiang, J.H. Ouyang and R. Kovacevic, Rapid Prototyping of 4043 Al-Alloy Parts by VP-GTAW, J. Mater. Process. Tech, 2004, 148, p 93–102.

    CAS  Article  Google Scholar 

  17. 17.

    Z. Qi, B. Qi, B.Q. Cong and R. Zhang, Microstructure and Mechanical Properties of Wire+ Arc Additively Manufactured Al-Mg-Si Aluminum Alloy, Mater. Lett, 2018, 233, p 348–350.

    CAS  Article  Google Scholar 

  18. 18.

    L. Thijs, K. Kempen, J. Kruth and J.V. Humbeeck, Fine-structured Aluminium Products with Controllable Texture by Selective Laser Melting of Pre-alloyed AlSi10Mg Powder, Acta Mater, 2013, 61, p 1809–1819.

    CAS  Article  Google Scholar 

  19. 19.

    T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De and W. Zhang, Additive Manufacturing of Metallic Components—Process, Structure and Properties. Prog. Mater. Sci, 2018, 92, p 112–224.

    CAS  Article  Google Scholar 

  20. 20.

    H.S. Kang, W.Y. Yoon, K.H. Kim, M.H. Kim and Y.P. Yoon, Microstructure Selections in the Undercooled Hypereutectic Al–Si Alloys, Mater. Sci. Eng. A, 2005, 404, p 117–123.

    Article  Google Scholar 

  21. 21.

    B. Jiang, Z.S. Ji, M.L. Hu, H.Y. Xu and S. Xu, A Novel Modifier on Eutectic Si and Mechanical Properties of Al-Si Alloy, Mater. Lett, 2019, 239, p 13–16.

    CAS  Article  Google Scholar 

  22. 22.

    Q.F. Yang, C.J. Xia, Y.Q. Deng, X.F. Li and H.W. Wang, Microstructure and Mechanical Properties of AlSi7Mg0.6 Aluminum Alloy Fabricated by Wire and Arc Additive Manufacturing Based on Cold Metal Transfer (WAAM-CMT), Material, 2019, 12, p 2525.

    CAS  Article  Google Scholar 

  23. 23.

    R. Rashid, S.H. Masood, D. Ruan, S. Palanisamy, R.A. Rahman Rashid, J. Elambasseril and M. Brandt, Effect of Energy Per Layer on the Anisotropy of Selective Laser Melted AlSi12 Aluminium Alloy, Addit. Manuf, 2018, 22, p 426–439.

    CAS  Google Scholar 

  24. 24.

    X.Y. Li, W.J. Xia, H.G. Yan, J.H. Chen, B. Su, M. Song, Z.Z. Li and Y.L. Li, Dynamic Recrystallization Behaviors of High Mg Alloyed Al-Mg Alloy During High Strain Rate, Mater. Sci. Eng. A, 2019, 753, p 59–69.

    CAS  Article  Google Scholar 

  25. 25.

    G.J. Mao, R. Cao, C. Cayron, X.L. Mao, R. Logé and J.H. Chen, Effect of Cooling Conditions on Microstructures and Mechanical Behaviors of Reheated Low-Carbon Weld metals, Mater. Sci. Eng. A, 2019, 744, p 671–681.

    CAS  Article  Google Scholar 

  26. 26.

    Y.Q. Zhang, Y. Chen, Y.B. Cao, H.B. Qi and S.P. Yang, Microstructure and Mechanical Properties of Al-12Si Alloys Fabricated by Ultrasonic-Assisted Laser Metal Deposition, Material, 2020, 13, p 126.

    CAS  Article  Google Scholar 

Download references


This work is supported by the National Natural Science Foundation of China (Grant No. 51975419) and the China Scholarship Council.

Author information



Corresponding author

Correspondence to Xizhang Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Su, C., Chen, X., Konovalov, S. et al. Effect of Deposition Strategies on the Microstructure and Tensile Properties of Wire Arc Additive Manufactured Al-5Si Alloys. J. of Materi Eng and Perform (2021). https://doi.org/10.1007/s11665-021-05528-3

Download citation


  • Al-5Si alloy
  • deposition strategies
  • microstructure
  • tensile properties