Skip to main content
Log in

Continuous-Flow Catalytic Degradation of Hexacyanoferrate Ion through Electron Transfer Induction in a 3D-Printed Flow Reactor

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The benefits of 3D-printing technology in the manufacturing of laboratory equipment, in particular catalytic applications, have recently been brought to the limelight. In this paper, continuous-flow reaction devices consisting of syringe pumps and flow reactors were fabricated using a 3D-printing technique which aims at circumventing the high cost of procuring the convectional reactors for catalytic reactions. Mesoporous manganese metal oxide (MnMMO) and mesoporous cobalt metal oxide (CoMMO) catalysts were synthesized and fully characterized. The catalytic activity of the prepared nanocatalysts was evaluated in a continuous-flow operation using an in-house 3D-printed flow device for the reduction of hexacyanoferrate ion into a useful intermediate compound industrially. Different reaction parameters such as flow rates, temperature, and catalyst amount were investigated for the system’s optimization. The result showed an impressive output with an outstanding conversion of 94.1% hexacyanoferrate ion in 6-minute reaction time. Also, the excellent stability of five-run reusability on hexacyanoferrate ion was performed in a safe, faster, and well-controlled microenvironment.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.R. Chapman, M.H.T. Kwan, G. King, K.E. Jolley, M. Hussain, S. Hussain, I.E. Salama, C. Gonza, L.A. Thompson, M.E. Bayana, A.D. Clayton, B.N. Nguyen, N.J. Turner, N. Kapur and A.J. Blacker, Simple and Versatile Laboratory Scale CSTR for Multiphasic Continuous-Flow Chemistry and Long Residence Times, Org. Process Res. Dev., 2017, 21(9), p 1294–1301.

    Article  CAS  Google Scholar 

  2. J.M. Neumaier, A. Madani, T. Klein and T. Ziegler, Low-Budget 3D-Printed Equipment for Continuous Flow Reactions, Beilstein J. Org. Chem., 2019, 15(1), p 558–566.

    Article  CAS  Google Scholar 

  3. K. Maresz, A. Ciemięga and J. Mrowiec-Białoń, Selective Reduction of Ketones and Aldehydes in Continuous-Flow Microreactor—Kinetic Studies, Catalysts, 2018, 8(5), p 221.

    Article  Google Scholar 

  4. S.Z. Shirejini and A. Mohammadi, Halogen-Lithium Exchange Reaction Using an Integrated Glass Microfluidic Device: An Optimized Synthetic Approach, Org. Process Res. Dev., 2017, 21(3), p 292–303.

    Article  Google Scholar 

  5. C. De Risi, O. Bortolini, A. Brandolese, G. Di Carmine, D. Ragno and A. Massi, Recent Advances in Continuous-Flow Organocatalysis for Process Intensification, React. Chem. Eng., 2020, 5, p 1017–1052.

    Article  Google Scholar 

  6. X. Liu, B. Ünal and K.F. Jensen, Heterogeneous Catalysis with Continuous Flow Microreactors, Catal. Sci. Technol., 2012, 2(10), p 2134–2138.

    Article  CAS  Google Scholar 

  7. R. Ricciardi, R. Munirathinam, J. Huskens and W. Verboom, Improved Catalytic Activity and Stability Using Mixed Sulfonic Acid- and Hydroxy-Bearing Polymer Brushes in Microreactors, ACS Appl. Mater. Interfaces, 2014, 6(12), p 9386–9392.

    Article  CAS  Google Scholar 

  8. O.A. Alimi, N. Bingwa and R. Meijboom, Chemical Engineering Research and Design Homemade 3 -D Printed Flow Reactors for Heterogeneous Catalysis, Chem. Eng. Res. Des., 2019, 150, p 116–129.

    Article  CAS  Google Scholar 

  9. A. Tanimu, S. Jaenicke and K. Alhooshani, Heterogeneous Catalysis in Continuous Flow Microreactors: A Review of Methods and Applications, Chem. Eng. J., 2017, 327, p 792–821.

    Article  CAS  Google Scholar 

  10. M.R. Penny and S.T. Hilton, Design and Development of 3D Printed Catalytically-Active Stirrers for Chemical Synthesis, React. Chem. Eng., 2020, 5(5), p 853–858.

    Article  CAS  Google Scholar 

  11. S. Rossi, A. Puglisi and M. Benaglia, Additive Manufacturing Technologies: 3D Printing in Organic Synthesis, ChemCatChem, 2018, 10(7), p 1–15.

    Article  Google Scholar 

  12. D. Ko, K. Gyak and D. Kim, Emerging Microreaction Systems Based on 3D Printing Techniques and Separation Technologies, J. Flow Chem, 2017, 7(3–4), p 72–81.

    Article  CAS  Google Scholar 

  13. C. Parra-cabrera, C. Achille, S. Kuhn and R. Ameloot, 3D Printing in Chemical Engineering and Catalytic Technology: Structured Catalysts, Mixers and Reactors, Chem. Soc. Rev., 2017, 47(1), p 209–230.

    Article  Google Scholar 

  14. A.K. Au, W. Huynh, L.F. Horowitz and A. Folch, 3D-Printed Microfluidics, Angew. Chem. Int. Ed., 2016, 55(12), p 3862–3881.

    Article  CAS  Google Scholar 

  15. P.J. Kitson, S. Glatzel, W. Chen, C. Lin, Y. Song and L. Cronin, 3D Printing of Versatile Reactionware for Chemical Synthesis, Nat. Protoc., 2016, 11(5), p 920–936.

    Article  CAS  Google Scholar 

  16. S.K. Nirveek and A.F. Bhattacharjee, Arturo Urrios, The Upcoming 3D-Printing Revolution in Microfluidics, Lab Chip, 2016, 16(10), p 1720–1742.

    Article  Google Scholar 

  17. A.J. Capel, S. Edmondson, S.D.R. Christie, R.D. Goodridge, R.J. Bibb and M. Thurstans, Design and Additive Manufacture for Flow Chemistry, R. Soc. Chem., 2013, 13, p 4583–4590.

    CAS  Google Scholar 

  18. L.P. Bressan, J. Robles-Najar, C.B. Adamo, R.F. Quero, B.M.C. Costa, D.P. de Jesus and J.A.F. da Silva, 3D-Printed Microfluidic Device for the Synthesis of Silver and Gold Nanoparticles, Microchem. J., 2019, 146, p 1083–1089.

    Article  CAS  Google Scholar 

  19. M.S. Hossain and H. Taheri, In Situ Process Monitoring for Additive Manufacturing Through Acoustic Techniques, J. Mater. Eng. Perform., 2020, 29, p 6249–6262.

    Article  CAS  Google Scholar 

  20. M.V. Bandulasena, G.T. Vladisavljević, O.G. Odunmbaku and B. Benyahia, Continuous Synthesis of PVP Stabilized Biocompatible Gold Nanoparticles with a Controlled Size Using a 3D Glass Capillary Microfluidic Device, Chem. Eng. Sci., 2017, 171, p 233–243.

    Article  CAS  Google Scholar 

  21. L. Xu, J. Peng, M. Yan, D. Zhang and A.Q. Shen, Chemical Engineering and Processing: Process Intensification Droplet Synthesis of Silver Nanoparticles by a Micro Fluidic Device, Chem. Eng. Process. Process Intensif., 2016, 102, p 186–193.

    Article  CAS  Google Scholar 

  22. R. Karnik, F. Gu, P. Basto, C. Cannizzaro, L. Dean, W. Kyei-manu, R. Langer and O.C. Farokhzad, Microfluidic Platform for Controlled Synthesis of Polymeric Nanoparticles, Nano Lett., 2008, 8(9), p 2906–2912.

    Article  CAS  Google Scholar 

  23. L. Uson, M. Arruebo, V. Sebastian and J. Santamaria, Single Phase Microreactor for the Continuous, High-Temperature Synthesis of < 4 Nm Superparamagnetic Iron Oxide Nanoparticles, Chem. Eng. J., 2018, 340, p 66–72.

    Article  CAS  Google Scholar 

  24. L.L. Lazarus, C.T. Riche, B.C. Marin, M. Gupta, N. Malmstadt and R.L. Brutchey, Two-Phase Microfluidic Droplet Flows of Ionic Liquids for the Synthesis of Gold and Silver Nanoparticles, Science, 2012, 4(6), p 3077–3083.

    CAS  Google Scholar 

  25. C. Rosso, S. Gisbertz, J.D. Williams, H.P.L. Gemoets, W. Debrouwer, B. Pieber and C.O. Kappe, An Oscillatory Plug Flow Photoreactor Facilitates Semi-Heterogeneous Dual Nickel/Carbon Nitride Photocatalytic C-N Couplings, React. Chem. Eng., 2020, 5(3), p 597–604.

    Article  CAS  Google Scholar 

  26. H.P.L. Gemoets, Y. Su, M. Shang, V. Hessel, R. Luque and T. Noël, Liquid Phase Oxidation Chemistry in Continuous-Flow Microreactors, Chem. Soc. Rev., 2016, 45(1), p 83–117.

    Article  CAS  Google Scholar 

  27. T. Ge, Z. Hua, X. He, Y. Zhu, W. Ren, L. Chen, L. Zhang, H. Chen, C. Lin, H. Yao and J. Shi, One-Pot Synthesis of Hierarchically Structured ZSM-5 Zeolites Using Single Micropore-Template, Chinese J. Catal., 2015, 36(6), p 866–873.

    Article  CAS  Google Scholar 

  28. P. Hervés, M. Pérez-lorenzo, L.M. Liz-marzán, J. Dzubiella, Y. Lu, M. Ballauff, P. Herve, J. Dzubiella, Y. Lu and M. Ballauff, Chem Soc Rev Catalysis by Metallic Nanoparticles in Aqueous Solution: Model Reactions W, Chem. Soc. Rev., 2012, 41(17), p 5577–5587.

    Article  Google Scholar 

  29. A.G. Assefa, A.A. Mesfin, M.L. Akele, A.K. Alemu, B.R. Gangapuram, V. Guttena and M. Alle, Microwave-Assisted Green Synthesis of Gold Nanoparticles Using Olibanum Gum (Boswellia Serrate) and its Catalytic Reduction of 4-Nitrophenol and Hexacyanoferrate (III) by Sodium Borohydride, J. Clust. Sci., 2017, 28(3), p 917–935.

    Article  Google Scholar 

  30. J. Chen, F. Chen, Y. Wang, M. Wang, Q. Wu, X. Zhou and X. Ge, One-Step Synthesis of Poly (Ethyleneglycol Dimethacrylate)-Microspheres-Supported Nano-Au Catalyst in Methanol-Water Solution under γ-Ray Radiation, RSC Adv., 2016, 6(61), p 55878–55883.

    Article  CAS  Google Scholar 

  31. X. Liu, Y. Shen, R. Yang, S. Zou, X. Ji, L. Shi, Y. Zhang, D. Liu, L. Xiao, X. Zheng, S. Li, J. Fan and G.D. Stucky, Inkjet Printing Assisted Synthesis of Multicomponent Mesoporous Metal Oxides for Ultrafast Catalyst Exploration, Nano Lett., 2012, 12(11), p 5733–5739.

    Article  CAS  Google Scholar 

  32. Y. Du, Q. Meng, J. Wang, J. Yan, H. Fan, Y. Liu and H. Dai, Three-Dimensional Mesoporous Manganese Oxides and Cobalt Oxides: High-Efficiency Catalysts for the Removal of Toluene and Carbon Monoxide, Microporous Mesoporous Mater., 2012, 162, p 199–206.

    Article  CAS  Google Scholar 

  33. S.K. Ghosh and H. Rahaman, Noble Metal-Manganese Oxide Hybrid Nanocatalysts, Noble Metal-Metal Oxide Hybrid Nanoparticles, 2019, 5, p 313–340.

    Article  Google Scholar 

  34. P. Veerakumar, K. Salamalai, P. Thanasekaran and K.C. Lin, Simple Preparation of Porous Carbon-Supported Ruthenium: Propitious Catalytic Activity in the Reduction of Ferrocyanate(III) and a Cationic Dye, ACS Omega, 2018, 3(10), p 12609–12621.

    Article  CAS  Google Scholar 

  35. S. Rossi, R. Porta, D. Brenna, A. Puglisi and M. Benaglia, Stereoselective Catalytic Synthesis of Active Pharmaceutical Ingredients in Homemade 3D-Printed Mesoreactors, Angew. Chemie, 2017, 129(15), p 4354–4358.

    Article  Google Scholar 

  36. M. Hibben and S. Holmes, TINKERING with TINKERCAD A Beginner ’s Guide to Creating 3D Printer Designs With Presenters, https://www.tinkercad.com, 2017.

  37. O.A. Alimi, C.A. Akinnawo, O.R. Onisuru and R. Meijboom, 3-D Printed Microreactor for Continuous Flow Oxidation of a Flavonoid, J. Flow Chem., 2020, 10, p 517–531.

    Article  CAS  Google Scholar 

  38. O.A. Alimi, T.B. Ncongwane and R. Meijboom, Design and Fabrication of a Monolith Catalyst for Continuous Flow Epoxidation of Styrene in Polypropylene Printed Flow Reactor, Chem. Eng. Res. Des., 2020, 159, p 395–409.

    Article  CAS  Google Scholar 

  39. G. 2016 C.S.M. Phytron, CATALOGUE STEPPER MOTORS Precision for Challenging Applications, 2016.

  40. N. Masunga, G.S. Tito and R. Meijboom, A General Catalytic Evaluation of Mesoporous Metal Oxides for Liquid Phase Oxidation of Styrene, Appl. Catal. A Gen., 2018, 552, p 154–167.

    Article  CAS  Google Scholar 

  41. A. Jha, T. Chandole, R. Pandya, H.S. Roh and C.V. Rode, Solvothermal Synthesis of Mesoporous Manganese Oxide with Enhanced Catalytic Activity for Veratryl Alcohol Oxidation, RSC Adv., 2014, 4(37), p 19450–19455.

    Article  CAS  Google Scholar 

  42. K. Stangeland, D.Y. Kalai, Y. Ding and Z. Yu, Mesoporous Manganese-Cobalt Oxide Spinel Catalysts for CO2 Hydrogenation to Methanol, J CO2 Util, 2019, 32, p 146–154.

    Article  CAS  Google Scholar 

  43. M. Qiu, S. Zhan, H. Yu, D. Zhu and S. Wang, Facile Preparation of Ordered Mesoporous MnCo2O4 for Low-Temperature Selective Catalytic Reduction of NO with NH3, Nanoscale, 2015, 7(6), p 2568–2577.

    Article  CAS  Google Scholar 

  44. A.K. Ilunga, I.R. Legodi, S. Gumbi and R. Meijboom, Isothermic Adsorption of Morin onto the Reducible Mesoporous Manganese Oxide Materials Surface, Appl. Catal. B Environ., 2018, 224, p 928–939.

    Article  CAS  Google Scholar 

  45. B.M. Mogudi, P. Ncube and R. Meijboom, Catalytic Activity of Mesoporous Cobalt Oxides with Controlled Porosity and Crystallite Sizes: Evaluation Using the Reduction of 4-Nitrophenol, Appl. Catal. B Environ., 2016, 198, p 74–82.

    Article  CAS  Google Scholar 

  46. S. Carregal-romero, P. Jorge, P. Herv, L.M. Liz-marz and P. Mulvaney, Colloidal Gold-Catalyzed Reduction of Ferrocyanate ( III ) by Borohydride Ions: A Model System for Redox Catalysis, Science, 2010, 26(18), p 1271–1277.

    CAS  Google Scholar 

  47. I. Sarhid, I. Lampre, D. Dragoe, P. Beaunier, B. Palpant and H. Remita, Hexacyano Ferrate (III) Reduction by Electron Transfer Induced by Plasmonic Catalysis on Gold Nanoparticles, Materials (Basel)., 2019, 12(18), p 3012.

    Article  CAS  Google Scholar 

  48. Q. Xia, D. Su, X. Yang, F. Chai, C. Wang and J. Jiang, One Pot Synthesis of Gold Hollow Nanospheres with Efficient and Reusable Catalysis, RSC Adv., 2015, 5(72), p 58522–58527.

    Article  CAS  Google Scholar 

  49. R. Kanwar, R. Bhar and S.K. Mehta, Designed Meso-macroporous Silica Framework Impregnated with Copper Oxide Nanoparticles for Enhanced Catalytic Performance, ChemCatChem, 2018, 10(9), p 2087–2095.

    Article  CAS  Google Scholar 

  50. Y. Liu and X. Jiang, Why Microfluidics? Merits and Trends in Chemical Synthesis, Lab Chip, 2017, 17(23), p 3960–3978.

    Article  CAS  Google Scholar 

  51. G. Liu, X. Ma, X. Sun, Y. Jia and T. Wang, Controllable Synthesis of Silver Nanoparticles Using Three-Phase Flow Pulsating Mixing Microfluidic Chip, Adv. Mater. Sci. Eng., 2018, 20, p 18.

    Google Scholar 

  52. I.M. Mándity, S.B. Ötvös and F. Fülöp, Strategic Application of Residence-Time Control in Continuous-Flow Reactors, ChemistryOpen, 2015, 4(3), p 212–223.

    Article  Google Scholar 

  53. X. Pu and Y. Su, Heterogeneous Catalysis in Microreactors with Nanofluids for Fine Chemicals Syntheses: Benzylation of Toluene with Benzyl Chloride over Silica-Immobilized FeCl3 Catalyst, Chem. Eng. Sci., 2018, 184, p 200–208.

    Article  CAS  Google Scholar 

  54. C.P. Haas, T. Müllner, R. Kohns, D. Enke and U. Tallarek, High-Performance Monoliths in Heterogeneous Catalysis with Single-Phase Liquid Flow, React. Chem. Eng., 2017, 2(4), p 498–511.

    Article  CAS  Google Scholar 

  55. G. Lente, Facts and Alternative Facts in Chemical Kinetics: Remarks about the Kinetic Use of Activities, Termolecular Processes, and Linearization Techniques, Curr. Opin. Chem. Eng., 2018, 21, p 76–83.

    Article  Google Scholar 

  56. S.R. Thawarkar, B. Thombare, B.S. Munde and N.D. Khupse, Kinetic Investigation for the Catalytic Reduction of Nitrophenol Using Ionic Liquid Stabilized Gold Nanoparticles, RSC Adv., 2018, 8(67), p 38384–38390.

    Article  CAS  Google Scholar 

  57. Z. Mohammadi and M.H. Entezari, Sono-Synthesis Approach in Uniform Loading of Ultrafine Ag Nanoparticles on Reduced Graphene Oxide Nanosheets: An Efficient Catalyst for the Reduction of 4-Nitrophenol, Ultrason. Sonochem., 2018, 44, p 1–13.

    Article  CAS  Google Scholar 

  58. C. Xiao, Q. Wu, A. Chang, Y. Peng, W. Xu and W. Wu, Responsive Au@ Polymer Hybrid Microgels for the Simultaneous Modulation and Monitoring of Au-Catalyzed Chemical Reaction, J. Mater. Chem. A, 2014, 2(25), p 9514–9523.

    Article  CAS  Google Scholar 

  59. K. Hareesh, R.P. Joshi, D.V. Sunitha, V.N. Bhoraskar and S.D. Dhole, Anchoring of Ag-Au Alloy Nanoparticles on Reduced Graphene Oxide Sheets for the Reduction of 4-Nitrophenol, Appl. Surf. Sci., 2016, 389, p 1050–1055.

    Article  Google Scholar 

  60. W. Wang, Z. Han, X. Wang, C. Zhao and H. Yu, Polyanionic Clusters [M (P4Mo6) 2](M = Ni, Cd) as Effective Molecular Catalysts for the Electron-Transfer Reaction of Ferricyanide to Ferrocyanide, Inorg. Chem., 2016, 55(13), p 6435–6442.

    Article  CAS  Google Scholar 

  61. U. Nithiyanantham, S.R. Ede, S. Anantharaj and S. Kundu, Self-Assembled NiWO4 Nanoparticles into Chain-like Aggregates on DNA Scaffold with Pronounced Catalytic and Supercapacitor Activities, Cryst. Growth Des., 2015, 15(2), p 673–686.

    Article  CAS  Google Scholar 

  62. A.M. Kalekar, K.K.K. Sharma, A. Lehoux, F. Audonnet, H. Remita, A. Saha and G.K. Sharma, Investigation into the Catalytic Activity of Porous Platinum Nanostructures, Langmuir, 2013, 29(36), p 11431–11439.

    Article  CAS  Google Scholar 

  63. K. Gong, Y. Liu and Z. Han, Manganese-Phosphomolybdate Molecular Catalysts for the Electron Transfer Reaction of Ferricyanide to Ferrocyanide, RSC Adv., 2015, 5(58), p 47004–47009.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the South African National Research Foundation {grant specific unique reference number (UID) 111710} for their support financially. We appreciate the University of Johannesburg for its funding as well as the availability of TEM in the spectra laboratory for analysis. We also thank Mr D. Harris and Dr. R. Meyer of Shimadzu South Africa (Pty) Ltd. for their instruments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinout Meijboom.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical focus in the Journal of Materials Engineering and Performance on Additive Manufacturing. The issue was organized by Dr. William Frazier, Pilgrim Consulting, LLC; Mr. Rick Russell, NASA; Dr. Yan Lu, NIST; Dr. Brandon D. Ribic, America Makes; and Caroline Vail, NSWC Carderock.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7969 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onisuru, O.R., Alimi, O.A., Potgieter, K. et al. Continuous-Flow Catalytic Degradation of Hexacyanoferrate Ion through Electron Transfer Induction in a 3D-Printed Flow Reactor. J. of Materi Eng and Perform 30, 4891–4901 (2021). https://doi.org/10.1007/s11665-021-05527-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05527-4

Keywords

Navigation