Structural and AC Electrical Properties of Tantalum Disulfide Embedded Polyaniline Composites

Abstract

Employing in situ chemical polymerization technique, polyaniline-tantalum disulfide (PANI/TaS2) composites in different compositions have been synthesized. Poor crystallinity of the composites has been ascertained by XRD spectra. FTIR studies confirmed that the interaction in composites occurred at interfacial level. TGA results indicated an improvement in the stability of composites. The results of field emission scanning electron microscopy, transmission electron microscopy and x-ray photoelectron spectroscopy have confirmed the incorporation of TaS2 in PANI matrix as the embedded structures. Conductivity in the composite was found to increase by one order of magnitude compared to pristine PANI, and impedance spectra revealed that the conductivity is of electronic in nature. Dielectric behavior of the composites is attributed to the Maxwell–Wagner polarization. As the observed tangent loss peaks are in the low-frequency regime (103 Hz), the present composites may be explored for designing of low or medium frequency devices. Various parameters such as power law exponent, critical frequency and relaxation time have been estimated and discussed.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

References

  1. 1.

    A.G. Macdiarmid, J.C. Chiang, A.F. Richter and A.J. Epstein, Polyaniline: A New Concept in Conducting Polymers, Synth. Met., 1987, 18(1–3), p 285–290.

    CAS  Article  Google Scholar 

  2. 2.

    R. Megha, Y.T. Ravikiran, S.C. Vijaya Kumari, H.G. Rajprakash, S. Manjunatha, M. Revanasiddappa, M. Prashantkumar and S. Thomas, AC Conductivity Studies in Copper Decorated and Zinc Oxide Embedded Polypyrrole Composite Nanorods: Interfacial Effects, Mater. Sci. Semicond. Process., 2020, 110, p 104963. https://doi.org/10.1016/j.mssp.2020.104963

    CAS  Article  Google Scholar 

  3. 3.

    B. Chethan, H.G.R. Prakash, Y.T. Ravikiran, S.C.V. Kumari, S. Manjunatha and S. Thomas, Humidity Sensing Performance of Hybrid Nanorods of Polyaniline-Yttrium Oxide Composite Prepared by Mechanical Mixing Method, Talanta, 2020, 215, p 120906. https://doi.org/10.1016/j.talanta.2020.120906

    CAS  Article  Google Scholar 

  4. 4.

    A. Sunilkumar, S. Manjunatha, T. Machappa, B. Chethan, Y.T. Ravikiran and A. Tungsten, Disulphide-Polypyrrole Composite-Based Humidity Sensor at Room Temperature, Bull. Mater. Sci., 2019, 42, p 271. https://doi.org/10.1007/s12034-019-1955-5

    CAS  Article  Google Scholar 

  5. 5.

    T. Sen, S. Mishra and N.G. Shimpi, Synthesis and Sensing Applications of Polyaniline Nanocomposites: A Review, RSC Adv., 2016, 6(48), p 42196–42222. https://doi.org/10.1039/C6RA03049A

    CAS  Article  Google Scholar 

  6. 6.

    G. Ćirić-Marjanovic, Recent Advances in Polyaniline Composites with Metals, Metalloids and Nonmetals, Synth. Met., 2013, 170(1), p 31–56.

    Article  Google Scholar 

  7. 7.

    K. Vinay, M. Revanasiddappa, S. Manjunatha, K. Shivakumar and Y.T. Ravikiran, Room Temperature Humidity Sensing Behaviour of Silver Decorated Polyaniline Composite Room Temperature Humidity Sensing Behaviour of Silver Decorated Polyaniline Composite, Mater. Res. Express, 2019, 6, p 104003.

    CAS  Article  Google Scholar 

  8. 8.

    N. Badi, S. Khasim, A. Pasha, A.S. Alatawi and M. Lakshmi, Silver Nanoparticles Intercalated Polyaniline Composites for High Electrochemical Anti-Corrosion Performance in 6061 Aluminum Alloy-Based Solar Energy Frameworks, J. Biol Tribo-Corros., 2020, 6(4), p 1–9. https://doi.org/10.1007/s40735-020-00417-z

    Article  Google Scholar 

  9. 9.

    S. Manjunatha, S. Rajesh, P. Vishnoi and C.N.R. Rao, Reaction with Organic Halides as a General Method for the Covalent Functionalization of Nanosheets of 2D Chalcogenides and Related Materials, J. Mater. Res., 2017, 32(15), p 2984–2992.

    CAS  Article  Google Scholar 

  10. 10.

    P. Vishnoi, S. Rajesh, S. Manjunatha, A. Bandyopadhyay, M. Barua, S.K. Pati and C.N.R. Rao, Doping Phosphorene with Holes and Electrons through Molecular Charge Transfer, ChemPhysChem, 2017, 18(21), p 2985–2989.

    CAS  Article  Google Scholar 

  11. 11.

    J. Benson, I. Kovalenko, S. Boukhalfa, D. Lashmore, M. Sanghadasa and G. Yushin, Multifunctional CNT-Polymer Composites for Ultra-Tough Structural Supercapacitors and Desalination Devices, Adv. Mater., 2013, 25(45), p 6625–6632.

    CAS  Article  Google Scholar 

  12. 12.

    H.P. Cong, X.C. Ren, P. Wang and S.H. Yu, Flexible Graphene-Polyaniline Composite Paper for High-Performance Supercapacitor, Energy Environ, Sci., 2013, 6(4), p 1185. https://doi.org/10.1039/c2ee24203f

    CAS  Article  Google Scholar 

  13. 13.

    O.A. Al-Hartomy, S. Khasim, A. Roy and A. Pasha, Highly Conductive Polyaniline/Graphene Nano-Platelet Composite Sensor towards Detection of Toluene and Benzene Gases, Appl. Phys. A Mater. Sci. Process., 2019, 125(1), p 1–9. https://doi.org/10.1007/s00339-018-2317-7

    CAS  Article  Google Scholar 

  14. 14.

    M. Lakshmi, A.S. Roy, A. Parveen, O.A. Al-Hartomy and S. Khasim, Synthesis, Characterization, and Dielectric Studies of Ortho-Chloropolyaniline-Graphite Oxide Composites, J. Mater. Res., 2015, 30(15), p 2310–2318.

    CAS  Article  Google Scholar 

  15. 15.

    K. Gopalakrishnan, S. Sultan, A. Govindaraj and C.N.R. Rao, Supercapacitors Based on Composites of PANI with Nanosheets of Nitrogen-Doped RGO, BC1.5N, MoS2 and WS2, Nano Energy, 2015, 12, p 52–58. https://doi.org/10.1016/j.nanoen.2014.12.005

    CAS  Article  Google Scholar 

  16. 16.

    C.N.R. Rao, K. Gopalakrishnan and U. Maitra, Comparative Study of Potential Applications of Graphene, MoS2, and Other Two-Dimensional Materials in Energy Devices, Sensors, and Related Areas, ACS Appl. Mater. Interfaces, 2015, 7(15), p 7809–7832.

    CAS  Article  Google Scholar 

  17. 17.

    S. Manjunatha, A. Sunilkumar, Y.T. Ravikiran and T. Machappa, Effect of Holmium Oxide on Impedance and Dielectric Behavior of Polyaniline-Holmium Oxide Composites, J. Mater. Sci. Mater. Electron., 2019, 30(11), p 10332–10341.

    CAS  Article  Google Scholar 

  18. 18.

    Y. Feng, S. Gong, E. Du, K. Yu, J. Ren, Z. Wang and Z. Zhu, TaS2 Nanosheet-Based Ultrafast Response and Flexible Humidity Sensor for Multifunctional Applications, J. Mater. Chem. C, 2019, 30, p 9284–9292.

    Article  Google Scholar 

  19. 19.

    S. Manjunatha, T. Machappa, A. Sunilkumar and Y.T. Ravikiran, Tungsten Disulfide: An Efficient Material in Enhancement of AC Conductivity and Dielectric Properties of Polyaniline, J. Mater. Sci. Mater. Electron., 2018, 29(13), p 11581–11590.

    CAS  Article  Google Scholar 

  20. 20.

    S. Manjunatha, B. Chethan, Y.T. Ravikiran and T. Machappa, Room Temperature Humidity Sensor Based on Polyaniline- Tungsten Disulfide Composite, AIP Conf. Proc., 1953, 2018, p 030096-1–030096–4.

    Google Scholar 

  21. 21.

    S. Manjunatha, T. Machappa, Y.T. Ravikiran, B. Chethan and A. Sunilkumar, Polyaniline Based Stable Humidity Sensor Operable at Room Temperature, Phys. B Phys. Condens. Matter, 2019, 561, p 170–178. https://doi.org/10.1016/j.physb.2019.02.063

    CAS  Article  Google Scholar 

  22. 22.

    A. Sunilkumar, S. Manjunatha, B. Chethan, Y.T. Ravikiran and T. Machappa, Polypyrrole-Tantalum Disulfide Composite: An Efficient Material for Fabrication of Room Temperature Operable Humidity Sensor, Sens. Actuat. A. Phys., 2019 https://doi.org/10.1016/j.sna.2019.111593

    Article  Google Scholar 

  23. 23.

    S. Manjunatha, T. Machappa, Y.T. Ravikiran, M. Chethan and M. Revanasiddappa, Room Temperature Humidity Sensing Performance of Polyaniline—Holmium Oxide Composite, Appl. Phys. A, 2019, 125, p 361. https://doi.org/10.1007/s00339-019-2638-1

    CAS  Article  Google Scholar 

  24. 24.

    M. Nath and C.N.R. Rao, Nanotubes of the Disulfides of Groups 4 and 5 Metals, Pure Appl. Chem., 2002, 74, p 1545–1552.

    CAS  Article  Google Scholar 

  25. 25.

    C. Dhivya, S.A.A. Vandarkuzhali and N. Radha, Antimicrobial Activities of Nanostructured Polyanilines Doped with Aromatic Nitro Compounds, Arab. J. Chem., 2016 https://doi.org/10.1016/j.arabjc.2015.12.005

    Article  Google Scholar 

  26. 26.

    B. Liang and L. Andrews, Infrared Spectra and Density Functional Theory Calculations of Group V Transition Metal Sulfides, J. Phys. Chem. A, 2002, 106(15), p 3738–3743.

    CAS  Article  Google Scholar 

  27. 27.

    S.V.P. Vattikuti, C. Byon and V. Chitturi, Selective Hydrothermally Synthesis of Hexagonal WS2platelets and Their Photocatalytic Performance under Visible Light Irradiation, Superlattices Microstruct., 2016, 94, p 39–50. https://doi.org/10.1016/j.spmi.2016.03.042

    CAS  Article  Google Scholar 

  28. 28.

    R. Megha, Y.T. Ravikiran, S.C.V. Kumari, H.G.R. Prakash, C.V.V. Ramana and S. Thomas, Enhancement in Alternating Current Conductivity of HCl Doped Polyaniline by Modified Titania, Compos. Interfaces, 2019, 26(4), p 309–324. https://doi.org/10.1080/09276440.2018.1499352

    CAS  Article  Google Scholar 

  29. 29.

    S. Quillard, G. Louarn, S. Lefrant and A.G. Macdiarmid, Vibrational Analysis of Polyaniline: A Comparative Study of Leucoemeraldine, Emeraldine, and Pernigraniline Bases, Phys. Rev. B, 1994, 50(17), p 12496–12508.

    CAS  Article  Google Scholar 

  30. 30.

    N. Vijayakumar, E. Subramanian and D. Pathinettam Padiyan, Change in AC Conduction Mechanism Together with Conversion of Submicron to Nanoparticles in Polyaniline and Its Poly(Vinyl Pyrrolidone) Blends on Heating-Induced Water Elimination, Synth. Met., 2012, 162(1–2), p 126–135. https://doi.org/10.1016/j.synthmet.2011.11.022

    CAS  Article  Google Scholar 

  31. 31.

    Y.T. Ravikiran, M.T. Lagare, M. Sairam, N.N. Mallikarjuna, B. Sreedhar, S. Manohar, A.G. MacDiarmid and T.M. Aminabhavi, Synthesis, Characterization and Low Frequency AC Conduction of Polyaniline/Niobium Pentoxide Composites, Synth. Met., 2006, 156(16–17), p 1139–1147.

    CAS  Article  Google Scholar 

  32. 32.

    V.H. Nguyen and J. Shim, Green Synthesis and Characterization of Carbon Nanotubes/Polyaniline Nanocomposites, J. Spectrosc., 2015, 2015, p 297804-1–297804–9.

    Article  Google Scholar 

  33. 33.

    J. Bisquert and G.G. Belmonte, Interpretation of AC Conductivity of Lightly Doped Conducting Polymers in Terms of Hopping Conduction *, Russ. J. Electrochem., 2004, 40(3), p 352–358.

    CAS  Article  Google Scholar 

  34. 34.

    J. Huang, Z. Yang, Z. Feng, X. Xie and X. Wen, A Novel ZnO@Ag@ Polypyrrole Hybrid Composite Evaluated as Anode Material for Zinc-Based Secondary Cell, Sci. Rep., 2016, 6, p 24471. https://doi.org/10.1038/srep24471

    CAS  Article  Google Scholar 

  35. 35.

    S. Khasim, M. Lakshmi, H. Johani, N. Badi and A.S. Roy, Investigations on Structural and Electrical Properties of Polyaniline–Cadmium Sulfide Nanocomposite Films for Solid State Electronics, Polym. Compos., 2019, 40(S1), p E579–E588.

    CAS  Article  Google Scholar 

  36. 36.

    D. Hui, R. Alexandrescu, M. Chipara, I. Morjan, G. Aldica, M.D. Chipara and K.T. Lau, Impedance Spectroscopy Studies on Doped Polyanilines, J. Optoelectron. Adv. Mater., 2004, 6(3), p 817–824.

    CAS  Google Scholar 

  37. 37.

    J.C. Dyre, The Random Free ~ Energy Barrier Model for Ac Conduction in Disordered Solids, J. Appl. Phys., 1988, 64(5), p 2456–2468.

    Article  Google Scholar 

  38. 38.

    S. Sarker, A.J.S. Ahammad, H.W. Seo and D.M. Kim, Electrochemical Impedance Spectra of Dye-Sensitized Solar Cells: Fundamentals and Spreadsheet Calculation, Int. J. Photoenergy, 2014, 2014, p 851705.

    Article  Google Scholar 

  39. 39.

    N. Maity, A. Kuila, S. Das, D. Mandal, A. Shit and A.K. Nandi, Optoelectronic and Photovoltaic Properties of Graphene Quantum Dot–Polyaniline Nanostructures, J. Mater. Chem A R. Soc. Chem., 2015, 3(41), p 20736–20748. https://doi.org/10.1039/C5TA06576C

    CAS  Article  Google Scholar 

  40. 40.

    Y. Cheng, J.S.Y. Zhu, H. Zhao and Z.J. Xu, A Flexible and Lightweight Biomass—Reinforced Microwave Absorber, Nano-Micro Lett., 2020, 12, p 125. https://doi.org/10.1007/s40820-020-00461-x

    CAS  Article  Google Scholar 

  41. 41.

    B. Quan, W. Shi, S.J.H. Ong, X. Lu, P.L. Wang, G. Ji, Y. Guo, L. Zheng and Z.J. Xu, Defect Engineering in Two Common Types of Dielectric Materials for Electromagnetic Absorption Applications, Adv. Funct. Mater., 2019, 29(28), p 1901236.

    Article  Google Scholar 

  42. 42.

    H.M. Kim, C.Y. Lee and J. Joo, AC Dielectric Relaxation of Lightly Hydrochloric-Acid (HCl)-Doped Polyanilines, Korean Phys. Soc., 2000, 36(6), p 371–375.

    CAS  Google Scholar 

  43. 43.

    K.W. Wagner, Annalen Der Physik, Ann. Phys., 1913, 5, p 817–855.

    Article  Google Scholar 

  44. 44.

    S. Sinha, S.K. Chatterjee, J. Ghosh and A.K. Meikap, Analysis of the Dielectric Relaxation and AC Conductivity Behavior of Polyvinyl Alcohol-Cadmium Selenide Nanocomposite Films, Polym. Compos., 2017, 38(2), p 287–298.

    CAS  Article  Google Scholar 

  45. 45.

    M. Mehedi Hassan, A.S. Ahmed, M. Chaman, W. Khan, A.H. Naqvi and A. Azam, Structural and Frequency Dependent Dielectric Properties of Fe 3+ Doped ZnO Nanoparticles, Mater. Res. Bull., 2012, 47(12), p 3952–3958. https://doi.org/10.1016/j.materresbull.2012.08.015

    CAS  Article  Google Scholar 

  46. 46.

    N. Rezlescu and E. Rezlescu, Dielectric Properties of Copper Containing Ferrites, Phys. Status Solidi, 1974, 23(2), p 575–582. https://doi.org/10.1002/pssa.2210230229

    CAS  Article  Google Scholar 

  47. 47.

    I. Sadiq, S. Naseem, M. Naeem Ashiq, M.A. Khan, S. Niaz and M.U. Rana, Structural and Dielectric Properties of Doped Ferrite Nanomaterials Suitable for Microwave and Biomedical Applications, Prog. Nat. Sci. Mater. Int., 2015, 25(5), p 419–424. https://doi.org/10.1016/j.pnsc.2015.09.011

    CAS  Article  Google Scholar 

Download references

Acknowledgments

All the authors thank Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, for providing facilities for structural characterization of the samples.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Y. T. Ravikiran or T. Machappa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Manjunatha, S., Megha, R., Chethan, B. et al. Structural and AC Electrical Properties of Tantalum Disulfide Embedded Polyaniline Composites. J. of Materi Eng and Perform 30, 1885–1894 (2021). https://doi.org/10.1007/s11665-021-05526-5

Download citation

Keywords

  • AC conductivity
  • dielectric constant
  • impedance spectra
  • polyaniline
  • tantalum disulfide