Abstract
Employing in situ chemical polymerization technique, polyaniline-tantalum disulfide (PANI/TaS2) composites in different compositions have been synthesized. Poor crystallinity of the composites has been ascertained by XRD spectra. FTIR studies confirmed that the interaction in composites occurred at interfacial level. TGA results indicated an improvement in the stability of composites. The results of field emission scanning electron microscopy, transmission electron microscopy and x-ray photoelectron spectroscopy have confirmed the incorporation of TaS2 in PANI matrix as the embedded structures. Conductivity in the composite was found to increase by one order of magnitude compared to pristine PANI, and impedance spectra revealed that the conductivity is of electronic in nature. Dielectric behavior of the composites is attributed to the Maxwell–Wagner polarization. As the observed tangent loss peaks are in the low-frequency regime (103 Hz), the present composites may be explored for designing of low or medium frequency devices. Various parameters such as power law exponent, critical frequency and relaxation time have been estimated and discussed.
This is a preview of subscription content, access via your institution.












References
- 1.
A.G. Macdiarmid, J.C. Chiang, A.F. Richter and A.J. Epstein, Polyaniline: A New Concept in Conducting Polymers, Synth. Met., 1987, 18(1–3), p 285–290.
- 2.
R. Megha, Y.T. Ravikiran, S.C. Vijaya Kumari, H.G. Rajprakash, S. Manjunatha, M. Revanasiddappa, M. Prashantkumar and S. Thomas, AC Conductivity Studies in Copper Decorated and Zinc Oxide Embedded Polypyrrole Composite Nanorods: Interfacial Effects, Mater. Sci. Semicond. Process., 2020, 110, p 104963. https://doi.org/10.1016/j.mssp.2020.104963
- 3.
B. Chethan, H.G.R. Prakash, Y.T. Ravikiran, S.C.V. Kumari, S. Manjunatha and S. Thomas, Humidity Sensing Performance of Hybrid Nanorods of Polyaniline-Yttrium Oxide Composite Prepared by Mechanical Mixing Method, Talanta, 2020, 215, p 120906. https://doi.org/10.1016/j.talanta.2020.120906
- 4.
A. Sunilkumar, S. Manjunatha, T. Machappa, B. Chethan, Y.T. Ravikiran and A. Tungsten, Disulphide-Polypyrrole Composite-Based Humidity Sensor at Room Temperature, Bull. Mater. Sci., 2019, 42, p 271. https://doi.org/10.1007/s12034-019-1955-5
- 5.
T. Sen, S. Mishra and N.G. Shimpi, Synthesis and Sensing Applications of Polyaniline Nanocomposites: A Review, RSC Adv., 2016, 6(48), p 42196–42222. https://doi.org/10.1039/C6RA03049A
- 6.
G. Ćirić-Marjanovic, Recent Advances in Polyaniline Composites with Metals, Metalloids and Nonmetals, Synth. Met., 2013, 170(1), p 31–56.
- 7.
K. Vinay, M. Revanasiddappa, S. Manjunatha, K. Shivakumar and Y.T. Ravikiran, Room Temperature Humidity Sensing Behaviour of Silver Decorated Polyaniline Composite Room Temperature Humidity Sensing Behaviour of Silver Decorated Polyaniline Composite, Mater. Res. Express, 2019, 6, p 104003.
- 8.
N. Badi, S. Khasim, A. Pasha, A.S. Alatawi and M. Lakshmi, Silver Nanoparticles Intercalated Polyaniline Composites for High Electrochemical Anti-Corrosion Performance in 6061 Aluminum Alloy-Based Solar Energy Frameworks, J. Biol Tribo-Corros., 2020, 6(4), p 1–9. https://doi.org/10.1007/s40735-020-00417-z
- 9.
S. Manjunatha, S. Rajesh, P. Vishnoi and C.N.R. Rao, Reaction with Organic Halides as a General Method for the Covalent Functionalization of Nanosheets of 2D Chalcogenides and Related Materials, J. Mater. Res., 2017, 32(15), p 2984–2992.
- 10.
P. Vishnoi, S. Rajesh, S. Manjunatha, A. Bandyopadhyay, M. Barua, S.K. Pati and C.N.R. Rao, Doping Phosphorene with Holes and Electrons through Molecular Charge Transfer, ChemPhysChem, 2017, 18(21), p 2985–2989.
- 11.
J. Benson, I. Kovalenko, S. Boukhalfa, D. Lashmore, M. Sanghadasa and G. Yushin, Multifunctional CNT-Polymer Composites for Ultra-Tough Structural Supercapacitors and Desalination Devices, Adv. Mater., 2013, 25(45), p 6625–6632.
- 12.
H.P. Cong, X.C. Ren, P. Wang and S.H. Yu, Flexible Graphene-Polyaniline Composite Paper for High-Performance Supercapacitor, Energy Environ, Sci., 2013, 6(4), p 1185. https://doi.org/10.1039/c2ee24203f
- 13.
O.A. Al-Hartomy, S. Khasim, A. Roy and A. Pasha, Highly Conductive Polyaniline/Graphene Nano-Platelet Composite Sensor towards Detection of Toluene and Benzene Gases, Appl. Phys. A Mater. Sci. Process., 2019, 125(1), p 1–9. https://doi.org/10.1007/s00339-018-2317-7
- 14.
M. Lakshmi, A.S. Roy, A. Parveen, O.A. Al-Hartomy and S. Khasim, Synthesis, Characterization, and Dielectric Studies of Ortho-Chloropolyaniline-Graphite Oxide Composites, J. Mater. Res., 2015, 30(15), p 2310–2318.
- 15.
K. Gopalakrishnan, S. Sultan, A. Govindaraj and C.N.R. Rao, Supercapacitors Based on Composites of PANI with Nanosheets of Nitrogen-Doped RGO, BC1.5N, MoS2 and WS2, Nano Energy, 2015, 12, p 52–58. https://doi.org/10.1016/j.nanoen.2014.12.005
- 16.
C.N.R. Rao, K. Gopalakrishnan and U. Maitra, Comparative Study of Potential Applications of Graphene, MoS2, and Other Two-Dimensional Materials in Energy Devices, Sensors, and Related Areas, ACS Appl. Mater. Interfaces, 2015, 7(15), p 7809–7832.
- 17.
S. Manjunatha, A. Sunilkumar, Y.T. Ravikiran and T. Machappa, Effect of Holmium Oxide on Impedance and Dielectric Behavior of Polyaniline-Holmium Oxide Composites, J. Mater. Sci. Mater. Electron., 2019, 30(11), p 10332–10341.
- 18.
Y. Feng, S. Gong, E. Du, K. Yu, J. Ren, Z. Wang and Z. Zhu, TaS2 Nanosheet-Based Ultrafast Response and Flexible Humidity Sensor for Multifunctional Applications, J. Mater. Chem. C, 2019, 30, p 9284–9292.
- 19.
S. Manjunatha, T. Machappa, A. Sunilkumar and Y.T. Ravikiran, Tungsten Disulfide: An Efficient Material in Enhancement of AC Conductivity and Dielectric Properties of Polyaniline, J. Mater. Sci. Mater. Electron., 2018, 29(13), p 11581–11590.
- 20.
S. Manjunatha, B. Chethan, Y.T. Ravikiran and T. Machappa, Room Temperature Humidity Sensor Based on Polyaniline- Tungsten Disulfide Composite, AIP Conf. Proc., 1953, 2018, p 030096-1–030096–4.
- 21.
S. Manjunatha, T. Machappa, Y.T. Ravikiran, B. Chethan and A. Sunilkumar, Polyaniline Based Stable Humidity Sensor Operable at Room Temperature, Phys. B Phys. Condens. Matter, 2019, 561, p 170–178. https://doi.org/10.1016/j.physb.2019.02.063
- 22.
A. Sunilkumar, S. Manjunatha, B. Chethan, Y.T. Ravikiran and T. Machappa, Polypyrrole-Tantalum Disulfide Composite: An Efficient Material for Fabrication of Room Temperature Operable Humidity Sensor, Sens. Actuat. A. Phys., 2019 https://doi.org/10.1016/j.sna.2019.111593
- 23.
S. Manjunatha, T. Machappa, Y.T. Ravikiran, M. Chethan and M. Revanasiddappa, Room Temperature Humidity Sensing Performance of Polyaniline—Holmium Oxide Composite, Appl. Phys. A, 2019, 125, p 361. https://doi.org/10.1007/s00339-019-2638-1
- 24.
M. Nath and C.N.R. Rao, Nanotubes of the Disulfides of Groups 4 and 5 Metals, Pure Appl. Chem., 2002, 74, p 1545–1552.
- 25.
C. Dhivya, S.A.A. Vandarkuzhali and N. Radha, Antimicrobial Activities of Nanostructured Polyanilines Doped with Aromatic Nitro Compounds, Arab. J. Chem., 2016 https://doi.org/10.1016/j.arabjc.2015.12.005
- 26.
B. Liang and L. Andrews, Infrared Spectra and Density Functional Theory Calculations of Group V Transition Metal Sulfides, J. Phys. Chem. A, 2002, 106(15), p 3738–3743.
- 27.
S.V.P. Vattikuti, C. Byon and V. Chitturi, Selective Hydrothermally Synthesis of Hexagonal WS2platelets and Their Photocatalytic Performance under Visible Light Irradiation, Superlattices Microstruct., 2016, 94, p 39–50. https://doi.org/10.1016/j.spmi.2016.03.042
- 28.
R. Megha, Y.T. Ravikiran, S.C.V. Kumari, H.G.R. Prakash, C.V.V. Ramana and S. Thomas, Enhancement in Alternating Current Conductivity of HCl Doped Polyaniline by Modified Titania, Compos. Interfaces, 2019, 26(4), p 309–324. https://doi.org/10.1080/09276440.2018.1499352
- 29.
S. Quillard, G. Louarn, S. Lefrant and A.G. Macdiarmid, Vibrational Analysis of Polyaniline: A Comparative Study of Leucoemeraldine, Emeraldine, and Pernigraniline Bases, Phys. Rev. B, 1994, 50(17), p 12496–12508.
- 30.
N. Vijayakumar, E. Subramanian and D. Pathinettam Padiyan, Change in AC Conduction Mechanism Together with Conversion of Submicron to Nanoparticles in Polyaniline and Its Poly(Vinyl Pyrrolidone) Blends on Heating-Induced Water Elimination, Synth. Met., 2012, 162(1–2), p 126–135. https://doi.org/10.1016/j.synthmet.2011.11.022
- 31.
Y.T. Ravikiran, M.T. Lagare, M. Sairam, N.N. Mallikarjuna, B. Sreedhar, S. Manohar, A.G. MacDiarmid and T.M. Aminabhavi, Synthesis, Characterization and Low Frequency AC Conduction of Polyaniline/Niobium Pentoxide Composites, Synth. Met., 2006, 156(16–17), p 1139–1147.
- 32.
V.H. Nguyen and J. Shim, Green Synthesis and Characterization of Carbon Nanotubes/Polyaniline Nanocomposites, J. Spectrosc., 2015, 2015, p 297804-1–297804–9.
- 33.
J. Bisquert and G.G. Belmonte, Interpretation of AC Conductivity of Lightly Doped Conducting Polymers in Terms of Hopping Conduction *, Russ. J. Electrochem., 2004, 40(3), p 352–358.
- 34.
J. Huang, Z. Yang, Z. Feng, X. Xie and X. Wen, A Novel ZnO@Ag@ Polypyrrole Hybrid Composite Evaluated as Anode Material for Zinc-Based Secondary Cell, Sci. Rep., 2016, 6, p 24471. https://doi.org/10.1038/srep24471
- 35.
S. Khasim, M. Lakshmi, H. Johani, N. Badi and A.S. Roy, Investigations on Structural and Electrical Properties of Polyaniline–Cadmium Sulfide Nanocomposite Films for Solid State Electronics, Polym. Compos., 2019, 40(S1), p E579–E588.
- 36.
D. Hui, R. Alexandrescu, M. Chipara, I. Morjan, G. Aldica, M.D. Chipara and K.T. Lau, Impedance Spectroscopy Studies on Doped Polyanilines, J. Optoelectron. Adv. Mater., 2004, 6(3), p 817–824.
- 37.
J.C. Dyre, The Random Free ~ Energy Barrier Model for Ac Conduction in Disordered Solids, J. Appl. Phys., 1988, 64(5), p 2456–2468.
- 38.
S. Sarker, A.J.S. Ahammad, H.W. Seo and D.M. Kim, Electrochemical Impedance Spectra of Dye-Sensitized Solar Cells: Fundamentals and Spreadsheet Calculation, Int. J. Photoenergy, 2014, 2014, p 851705.
- 39.
N. Maity, A. Kuila, S. Das, D. Mandal, A. Shit and A.K. Nandi, Optoelectronic and Photovoltaic Properties of Graphene Quantum Dot–Polyaniline Nanostructures, J. Mater. Chem A R. Soc. Chem., 2015, 3(41), p 20736–20748. https://doi.org/10.1039/C5TA06576C
- 40.
Y. Cheng, J.S.Y. Zhu, H. Zhao and Z.J. Xu, A Flexible and Lightweight Biomass—Reinforced Microwave Absorber, Nano-Micro Lett., 2020, 12, p 125. https://doi.org/10.1007/s40820-020-00461-x
- 41.
B. Quan, W. Shi, S.J.H. Ong, X. Lu, P.L. Wang, G. Ji, Y. Guo, L. Zheng and Z.J. Xu, Defect Engineering in Two Common Types of Dielectric Materials for Electromagnetic Absorption Applications, Adv. Funct. Mater., 2019, 29(28), p 1901236.
- 42.
H.M. Kim, C.Y. Lee and J. Joo, AC Dielectric Relaxation of Lightly Hydrochloric-Acid (HCl)-Doped Polyanilines, Korean Phys. Soc., 2000, 36(6), p 371–375.
- 43.
K.W. Wagner, Annalen Der Physik, Ann. Phys., 1913, 5, p 817–855.
- 44.
S. Sinha, S.K. Chatterjee, J. Ghosh and A.K. Meikap, Analysis of the Dielectric Relaxation and AC Conductivity Behavior of Polyvinyl Alcohol-Cadmium Selenide Nanocomposite Films, Polym. Compos., 2017, 38(2), p 287–298.
- 45.
M. Mehedi Hassan, A.S. Ahmed, M. Chaman, W. Khan, A.H. Naqvi and A. Azam, Structural and Frequency Dependent Dielectric Properties of Fe 3+ Doped ZnO Nanoparticles, Mater. Res. Bull., 2012, 47(12), p 3952–3958. https://doi.org/10.1016/j.materresbull.2012.08.015
- 46.
N. Rezlescu and E. Rezlescu, Dielectric Properties of Copper Containing Ferrites, Phys. Status Solidi, 1974, 23(2), p 575–582. https://doi.org/10.1002/pssa.2210230229
- 47.
I. Sadiq, S. Naseem, M. Naeem Ashiq, M.A. Khan, S. Niaz and M.U. Rana, Structural and Dielectric Properties of Doped Ferrite Nanomaterials Suitable for Microwave and Biomedical Applications, Prog. Nat. Sci. Mater. Int., 2015, 25(5), p 419–424. https://doi.org/10.1016/j.pnsc.2015.09.011
Acknowledgments
All the authors thank Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, for providing facilities for structural characterization of the samples.
Author information
Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Manjunatha, S., Megha, R., Chethan, B. et al. Structural and AC Electrical Properties of Tantalum Disulfide Embedded Polyaniline Composites. J. of Materi Eng and Perform 30, 1885–1894 (2021). https://doi.org/10.1007/s11665-021-05526-5
Received:
Revised:
Accepted:
Published:
Issue Date:
Keywords
- AC conductivity
- dielectric constant
- impedance spectra
- polyaniline
- tantalum disulfide