Surface Characteristics and Corrosion Behavior of Wire Electrical Discharge Machining Processed Mg-4Zn Alloy

Abstract

In the present work, wire electrical discharge machining (WEDM) has been investigated for surface characteristics and corrosion behavior of Mg-4Zn alloy. Using Taguchi’s design of experiment technique, the influence of WEDM parameters, namely spark-on time, spark-off time, and servo voltage, has been studied on surface roughness (SR) and corrosion rate (CR). SEM observations showed that WEDM processing has a significant influence on the surface modification of Mg-4Zn alloy. Increasing discharge energy in the WEDM process has resulted in large surface craters, a higher density of micro-cracks, and micropores resulting in higher SR and accelerated CR in Mg-4Zn alloy. Corresponding to minimum SR and CR, the optimal set of WEDM parameters has been selected to prepare the WEDMed Mg-4Zn samples that were further analyzed for electrochemical polarization, apatite formation, and weight loss in simulated body fluid (SBF) and were additionally compared to polished samples of Mg-4Zn over a period of 21 days. Electrochemical polarization tests demonstrate that the CR increases rapidly upon the exposure time of 7 days; beyond that, the CR decreases with further exposure time up to 21 days. Initially, up to 24 hours, WEDMed samples showed better electrochemical corrosion resistance, whereas, later on, polished samples demonstrated an increased corrosion resistance for up to 21 days. Higher mineralization (or apatite formation) has been observed on WEDMed samples, which directly affects the amount of Mg ions released into the SBF solution; thus, weight loss was higher in the WEDMed sample than the polished sample. The weight loss for polished and WEDMed Mg-alloy samples after 21 days of immersion test was 9.3% and 13.5%, respectively. SEM analysis revealed the distinct corrosion morphology among the corroded surface of polished and WEDMed samples.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

References

  1. 1.

    Q. Chen and G.A. Thouas, Metallic Implant Biomaterials, Mater. Sci. Eng. R Rep., 2015, 87, p 1–57.

    Article  Google Scholar 

  2. 2.

    G.E.J. Poinern, S. Brundavanam and D. Fawcett, Biomedical Magnesium Alloys: A Review of Material Properties, Surface Modifications and Potential As a Biodegradable Orthopaedic Implant, Am. J. Biomed. Eng., 2013, 2, p 218–240.

    Article  Google Scholar 

  3. 3.

    Y.F. Zheng, X.N. Gu and F. Witte, Biodegradable Metals, Mater. Sci. Eng. R Rep., 2014, 77, p 1–34.

    Article  Google Scholar 

  4. 4.

    K. Kumar, R.S. Gill and U. Batra, Challenges and Opportunities for Biodegradable Magnesium Alloy Implants, Mater. Technol., 2018, 33(2), p 153–172.

    CAS  Article  Google Scholar 

  5. 5.

    R. Zeng, W. Dietzel, F. Witte N. Hort, and C. Blawert, Progress and Challenge for Magnesium Alloys as Biomaterials, Adv. Eng. Mater., 2008, 10, 3–14.

  6. 6.

    M.S. Uddin, C. Hall and P. Murphy, Surface Treatments for Controlling Corrosion Rate of Biodegradable Mg and Mg-Based Alloy Implants, Sci. Technol. Adv. Mater., 2015, 16(5), p 1–24.

    CAS  Article  Google Scholar 

  7. 7.

    L. Choudhary and R.K.S. Raman, Mechanical Integrity of Magnesium Alloys in a Physiological Environment: Slow Strain Rate Testing Based Study, Eng. Fract. Mech., 2013, 103, p 94–102.

    Article  Google Scholar 

  8. 8.

    D.H. Cho, B.W. Lee, J.Y. Park, K.M. Cho and I.M. Park, Microstructure, Mechanical Properties and Corrosion Behavior of Extruded Mg–Zn–Ag Alloys with Single-Phase Structure, J. Alloys Compd., 2017, 695, p 1166–1174.

    CAS  Article  Google Scholar 

  9. 9.

    J. Kubásek, D. Vojtěch, J. Lipov and T. Rum, Structure, Mechanical Properties, Corrosion Behavior and Cytotoxicity of Biodegradable Mg–X (X = Sn, Ga, In) Alloys, Mater. Sci. Eng. C, 2013, 33, p 2421–2432.

    Article  Google Scholar 

  10. 10.

    Z. Gui, Z. Kang, and Y. Li, Corrosion Mechanism of the As-Cast and As-Extruded Biodegradable Mg-3.0Gd-2.7Zn-0.4Zr-0.1Mn Alloys, Mater. Sci. Eng. C, 2019, 96: 831– 840.

  11. 11.

    L. Elkaiam, O. Hakimi, J. Goldman and E. Aghion, The Effect of Nd on Mechanical Properties and Corrosion Performance of Biodegradable Mg-5%Zn Alloy, Metals, 2018, 8, p 438.

    Article  Google Scholar 

  12. 12.

    F. Bär, L. Berger, L. Jauer, G. Kurtuldu and R. Schäublin, Laser Additive Manufacturing of Biodegradable Magnesium Alloy WE43: A Detailed Microstructure Analysis, Acta Biomater., 2019, 98, p 36–49.

    Article  Google Scholar 

  13. 13.

    C. Zhang, J. Lin and H. Liu, Magnesium-Based Biodegradable Materials for Biomedical Applications, Mater. Res. Soc., 2018 https://doi.org/10.1557/adv.2018.488

    Article  Google Scholar 

  14. 14.

    L. Chen, J. Li, S. Wang, S. Zhu, C. Zhu, B. Zheng, G. Yang and S. Guan, Surface Modification of the Biodegradable Cardiovascular Stent Material Mg–Zn–Y–Nd Alloy Via Conjugating REDV Peptide for Better Endothelialization, J. Mater. Res., 2018 https://doi.org/10.1557/jmr.2018.410

    Article  Google Scholar 

  15. 15.

    H. Jia, X. Feng, Y. Yang, Microstructure and Mechanical Properties of Directionally Solidified Mg–Zn Alloy as a Biomaterial, Mater. Sci. Technol., 2019.

  16. 16.

    D. Lu, Y. Huang, Q. Jiang, M. Zheng and J. Duan, A Zinc-Rich Coating Fabricated on a Magnesium Alloy by Oxide Reduction, Surf. Coat. Technol., 2019, 367, p 336–340.

    CAS  Article  Google Scholar 

  17. 17.

    N. Singh, U. Batra, K. Kumar and A. Mahapatro, Investigating TiO2–HA–PCL Hybrid Coating as an Efficient Corrosion Resistant Barrier of ZM21 Mg Alloy, J. Magn. Alloys, 2020 https://doi.org/10.1016/j.jma.2020.08.003

    Article  Google Scholar 

  18. 18.

    G. Peng, Q. Qiao, L. Jin, B. Zhang, Y. Wang, K. Huang, Q. Yao, D. Zhang, Z. Zhang, T. Fang, J. Wu and Y. He, A Novel CeO2/MgAl2O4 Composite Coating for the Protection of AZ31 Magnesium Alloys, J. Mater. Sci., 2020, 55(4), p 1727–1737. https://doi.org/10.1007/s10853-019-03992-w

    CAS  Article  Google Scholar 

  19. 19.

    M.B. Kannan and R.K.S. Raman, In Vitro Degradation and Mechanical Integrity of Calcium Containing Magnesium Alloys in Modified-Simulated Body Fluid, Biomaterials, 2008, 29, p 2306–2314.

    CAS  Article  Google Scholar 

  20. 20.

    N. Ahuja, U. Batra and K. Kumar, Experimental Investigation and Optimization of Wire Electrical Discharge Machining for Surface Characteristics and Corrosion Rate of Biodegradable Mg Alloy, J. Mater. Eng. Perf., 2020, 29(6), p 4117–4129.

    CAS  Article  Google Scholar 

  21. 21.

    V. Kavimani, K.S. Prakash and T. Thankachan, Influence of Machining Parameters on Wire Electrical Discharge Machining Performance of Reduced Graphene Oxide/Magnesium Composite and its Surface Integrity Characteristics, Compos. B, 2019, 167, p 621–630.

    CAS  Article  Google Scholar 

  22. 22.

    S. Sun, S. Di, P. Lu, D. Wei, J. Yu and Y. Guo, Microstructure and Properties of Metamorphic Layer Formed on Mg-RE Alloy in Micro EDM Process, Jinshu Xuebao/Acta Metall. Sin., 2013, 49(2), p 251–256.

    CAS  Article  Google Scholar 

  23. 23.

    A.M. Escobar, D.F. de Lange and H.I.M. Castillo, Simplified Plasma Channel Formation Model for the Electrical Discharge Machining Process, Int. J Adv Manuf Technol., 2020, 106, p 143–153.

    Article  Google Scholar 

  24. 24.

    A. Razeghiyadaki, C. Molardi, D. Talamona and A. Perveen, Modeling of Material Removal Rate and Surface Roughness Generated During Electro-Discharge Machining, Machines, 2019, 7, p 1–17.

    Article  Google Scholar 

  25. 25.

    V. Kumar, N. Sharma and K. Kumar, Surface Modification of WC-Co Alloy Using Al and Si Powder Through WEDM: A Thermal Erosion Process, Partic. Sci. Technol., 2018, 36, p 878–886.

    CAS  Article  Google Scholar 

  26. 26.

    K.K. Jangra, An Experimental Study for Multi-Pass Cutting Operation in Wire Electrical Discharge Machining of WC-5.3% Co Composite, Int. J. Adv. Manuf. Technol., 2015,76, 971–982.

  27. 27.

    V. Kumar, K.K. Jangra and V. Kumar, An Experimental Study on Trim Cutting Operation Using Metal Powder Mixed Dielectric in WEDM of Nimonic-90, Int. J. Ind. Eng. Comput., 2016, 7, p 135–146.

    Google Scholar 

  28. 28.

    M.A. Daud, M.Z. Omar, J. Syarif and Z. Sajuri, Effect of Wire-EDM Cutting on Fatigue Strength of AZ61 Magnesium Alloy, Mekanikal J., 2010, 30, p 68–76.

    Google Scholar 

  29. 29.

    B. Denkena, A. Lucas, F. Thorey, H. Waizy, N. Angrisani and A. Meyer-Lindenberg, Biocompatible Magnesium Alloys as Degradable Implant Materials—Machining Induced Surface and Subsurface Properties and Implant Performance, Spec. Issues Mag. Alloys, 2011 https://doi.org/10.5772/22793

    Article  Google Scholar 

  30. 30.

    A. Vadiraj, M. Kamaraj,U. Kamachi Mudali, and A.K. Nath, Effect of Surface Modified Layers on Fretting Fatigue Damage of Biomedical Titanium Alloys, Mater Sci Technol., 2006, 22, 1119–1125.

  31. 31.

    F. Klocke, M. Schwade, A. Klink, D. Veselovac and A. Kopp, Influence of Electro Discharge Machining of Biodegradable Magnesium on the Biocompatibility, Proced. CIRP., 2013, 5, p 88–93.

    Article  Google Scholar 

  32. 32.

    T.M. Yue, L.J. Yan and H.C.M. Yue, The Effect of Machined Surface Condition on the Corrosion Behavior of Magnesium ZM51/SiC Composite, Mater. Manuf. Process., 2004, 19, p 123–138.

    CAS  Article  Google Scholar 

  33. 33.

    M. Sheth, N. Sheth, N. Radadia and S. Parsana, Optimization of WEDM Parameters for Mg-Zn-RE-Zr Alloy Using Passing Vehicle Search Algorithm, Mater. Res. Express., 2020 https://doi.org/10.1088/2053-1591/ab66f9

    Article  Google Scholar 

  34. 34.

    S. Vijayabhaskar and T. Rajmohan, Experimental Investigation and Optimization of Machining Parameters in WEDM of Nano-SiC Particles Reinforced Magnesium Matrix Composites, Silicon, 2019, 11, p 1701–1716.

    CAS  Article  Google Scholar 

  35. 35.

    V. Kavimani, K.S. Prakash and T. Thankachan, Multi-Objective Optimization in WEDM Process of Graphene–SiC-Magnesium Composite Through Hybrid Techniques, Measurement, 2019, 145, p 335–349.

    Article  Google Scholar 

  36. 36.

    M.A. Razak, A.M. Abdul-Rani, T. Rao and S.R. Pedapati, Electrical Discharge Machining on Biodegradable AZ31 Magnesium Alloy Using Taguchi Method, Proced. Eng., 2016, 148, p 916–922.

    CAS  Article  Google Scholar 

  37. 37.

    R.S. Gill, K. Kumar and U. Batra, Apatite Formation and Weight Loss Study in Perforated AZ31 Mg-Alloy, J. Magn. Alloys, 2017, 3(5), p 362–367.

    Article  Google Scholar 

  38. 38.

    J. Xu, K. Xia, Z. Lian, L. Zhang, H. Yu, Z. Yu, Z. Weng and Z. Wang, Surface Properties on Magnesium Alloy and Corrosion Behaviour Based High-Speed Wire Electrical Discharge Machine Power Tubes, Micro Nano Lett., 2016, 11(1), p 15–19.

    Article  Google Scholar 

  39. 39.

    R. Prathipati, R. Ch and S.P. Dora, Corrosion Behavior of Surface Induced by Wire EDM on 316L Stainless Steel: An Experimental Investigation, Appl. Sci., 2019, 1, p 952.

    CAS  Google Scholar 

  40. 40.

    S.R. Arunachalam, S.E.G. Dorman and R.T. Buckley, Effect of Electrical Discharge Machining on Corrosion and Corrosion Fatigue Behavior of Aluminum Alloys, Int. J. Fatigue, 2018, 111, p 44–53.

    CAS  Article  Google Scholar 

  41. 41.

    S. Gupta, A. Kumar, Y.K. Sharma and A. Sharma, Multiple Performance Characteristics Optimization of WEDM by Grey Grade for EN-8, Opt. Eng. Res, 2020, 1, p 27–35. https://doi.org/10.47406/OER.2020.1105

    Article  Google Scholar 

  42. 42.

    K.Y. Kung and K.T. Chiang, Modeling and Analysis of Machinability Evaluation in the Wire Electrical Discharge Machining (WEDM) Process of Aluminum Oxide-Based Ceramic, Mater. Manuf. Process., 2008, 23, p 241–250.

    CAS  Article  Google Scholar 

  43. 43.

    K. Jangra, S. Grover, and A. Aggarwal, Optimization of Multi Machining Characteristics in WEDM of WC-5.3% Co Composite Using Integrated Approach of Taguchi, GRA and Entropy Method, Front. Mech. Eng., 2012, 7(3), 288-299.

  44. 44.

    N. Sharma, T. Raj and K.K. Jangra, Parameter Optimization and Experimental Study on Wire Electrical Discharge Machining of Porous Ni40Ti60 Alloy, Proceed. Inst. Mech. Eng., 2017, 231(6), p 956–970.

    CAS  Article  Google Scholar 

  45. 45.

    V. Kumar, K.K. Jangra, V. Kumar and N. Sharma, GA-Based Optimisation Using RSM in WEDM of Nimonic-90: A Nickel-Based Super Alloy, Int. J. Ind. Syst. Eng., 2018, 28(1), p 53–69.

    Google Scholar 

  46. 46.

    S. Das, S. Paul and B. Doloi, Application of CFD and Vapor Bubble Dynamics for An Efficient Electro-Thermal Simulation of EDM: An Integrated Approach, Int. J. Adv. Manuf. Technol., 2019, 102, p 1787–1800.

    Article  Google Scholar 

  47. 47.

    T. Kokubo and H. Takadama, How Useful is SBF in Predicting In-Vivo Bone Bioactivity?, Biomaterials, 2006, 27(15), p 2907–2915.

    CAS  Article  Google Scholar 

  48. 48.

    A. Giridharan and G.L. Samuel, Modeling and Analysis of Crater Formation During Wire Electrical Discharge Turning (WEDT) Process, Int. J. Adv. Manuf. Technol., 2015, 77, p 1229–1247.

    Article  Google Scholar 

Download references

Acknowledgment

This work is funded under the research grant (File no. EMR/2016/001581) sponsored by the SERB, DST, India.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kamal Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix-A

Appendix-A

TON in (machine unit) TON in µ-Sec TOFF in (machine unit) TOFF in µ-Sec TOFF in (machine unit) TOFF in µ-Sec
100 0 0 2 32 10
101 0.1 1 2.25 33 10.5
102 0.15 2 2.5 34 11
103 0.2 3 2.75 35 11.5
104 0.25 4 3 36 12
105 0.3 5 3.25 37 12.5
106 0.35 6 3.5 38 13
107 0.4 7 3.75 39 13.5
108 0.45 8 4 40 14
109 0.5 9 4.25 41 14.5
110 0.55 10 4.5 42 15
111 0.6 11 4.75 43 16
112 0.65 12 5 44 17
113 0.7 13 5.25 45 18
114 0.75 14 5.5 46 19
115 0.8 15 5.75 47 20
116 0.85 16 6 48 22
117 0.9 17 6.25 49 24
118 0.95 18 6.5 50 26
119 1 19 6.75 51 28
120 1.05 20 7 52 30
121 1.1 21 7.25 53 32
122 1.15 22 7.5 54 34
123 1.2 23 7.75 55 36
124 1.25 24 8 56 38
125 1.3 25 8.25 57 40
126 1.35 26 8.5 58 42
127 1.4 27 8.75 59 44
128 1.45 28 9 60 46
129 1.5 29 9.25 61 48
130 1.55 30 9.5 62 50
131 1.65 31 9.75 63 52

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gill, R.S., Kumar, K. & Batra, U. Surface Characteristics and Corrosion Behavior of Wire Electrical Discharge Machining Processed Mg-4Zn Alloy. J. of Materi Eng and Perform (2021). https://doi.org/10.1007/s11665-021-05525-6

Download citation

Keywords

  • apatite formation
  • corrosion rate
  • Mg-4Zn
  • Mg alloy
  • surface roughness
  • wire electrical discharge machining (WEDM)
  • weight loss