Effect of Peak Power in Deep Oscillation Magnetron Sputtering on Film Properties


In the last decade, new magnetron sputtering deposition techniques have been developed to produce highly ionized fluxes of sputtered material and, consequently, allow greater control over the energy and direction of the sputtered species. One of such techniques is deep oscillations magnetron sputtering (DOMS). The main objective of the paper is to understand if the new deposition mechanisms that the DOMS technology brings about, in comparison to DCMS, is always an advantage for the film deposition. For this purpose, four well-known deposition systems (Cr, Ta, CrN and TiSiN) were investigated. In each case, thin films were deposited by DOMS and DCMS in order to compare their microstructural, structural and mechanical properties. Taken as examples, the four study systems are understood that, in some cases, it is possible to achieve film properties never achieved through DCMS. However, in other cases, due to their particular characteristics (high voltages), the HiPIMS advantages are diminished when compared to DCMS. Possible solutions to overcome the observed problems are proposed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    U. Helmersson, M. Lattemann, J. Bohlmark, A.P. Ehiasarian and J.T. Gudmundsson, Ionized Physical Vapor Deposition (IPVD): A Review of Technology and Applications, Thin Solid Films, 2006, 513, p 1–24.

    CAS  Article  Google Scholar 

  2. 2.

    A. Ehiasarian, A. Vetushka, Y.A. Gonzalvo, G. Sáfrán, L. Székely and P. Barna, Influence of High Power Impulse Magnetron Sputtering Plasma Ionization on the Microstructure of TiN Thin Films, J. Appl. Phys., 2011, 109, p 104314.

    Article  Google Scholar 

  3. 3.

    V. Kouznetsov, K. Macak, J.M. Schneider, U. Helmersson and I. Petrov, A Novel Pulsed Magnetron Sputter Technique Utilizing Very High Target Power Densities, Surf. Coat. Technol., 1999, 122, p 290–293.

    CAS  Article  Google Scholar 

  4. 4.

    D. Lundin and K. Sarakinos, An Introduction to Thin Film Processing Using High-Power Impulse Magnetron Sputtering, J. Mater. Res., 2012, 27, p 780–792.

    CAS  Article  Google Scholar 

  5. 5.

    F. Ferreira, R. Serra, J. Oliveira and A. Cavaleiro, Effect of Peak Target Power on the Properties of Cr Thin Films Sputtered by HiPIMS in Deep Oscillation Magnetron Sputtering (DOMS) Mode, Surf. Coat. Technol., 2014, 258, p 249–256.

    CAS  Article  Google Scholar 

  6. 6.

    J. Oliveira, F. Fernandes, F. Ferreira and A. Cavaleiro, Tailoring the Nanostructure of Ti-Si-N Thin Films by HiPIMS in Deep Oscillation Magnetron Sputtering (DOMS) Mode, Surf. Coat. Technol., 2015, 264, p 140–149.

    CAS  Article  Google Scholar 

  7. 7.

    F. Ferreira, J. Oliveira and A. Cavaleiro, CrN Thin Films Deposited by HiPIMS in DOMS Mode, Surf. Coat. Technol., 2016, 291, p 365–375.

    CAS  Article  Google Scholar 

  8. 8.

    F. Ferreira, C. Sousa, A. Cavaleiro, A. Anders and J. Oliveira, Phase Tailoring of Tantalum Thin Films Deposited in Deep Oscillation Magnetron Sputtering Mode, Surf. Coat. Technol., 2017, 314, p 97–104.

    CAS  Article  Google Scholar 

  9. 9.

    F. Ferreira, R. Serra, A. Cavaleiro and J. Oliveira, Additional Control of Bombardment by Deep Oscillation Magnetron Sputtering: Effect on the Microstructure and Topography of Cr Thin Films, Thin Solid Films, 2016, 619, p 250–260.

    CAS  Article  Google Scholar 

  10. 10.

    J.C. Oliveira, F. Ferreira, A. Anders and A. Cavaleiro, Reduced Atomic Shadowing in HiPIMS: Role of the Thermalized Metal Ions, Appl. Surf. Sci., 2018, 433, p 934–944.

    CAS  Article  Google Scholar 

  11. 11.

    F. Ferreira, A. Aijaz, T. Kubart, A. Cavaleiro and J. Oliveira, Hard and Dense Diamond Like Carbon Coatings Deposited by Deep Oscillations Magnetron Sputtering, Surf. Coat. Technol., 2018, 336, p 92–98.

    CAS  Article  Google Scholar 

  12. 12.

    J.A. Hopwood, The Role of Ionized Physical Vapor Deposition in Integrated Circuit Fabrication, Thin Films, 2000, 27, p 1–7.

    Article  Google Scholar 

  13. 13.

    J. Lin, J.J. Moore, W.D. Sproul, S.L. Lee and J. Wang, Effect of Negative Substrate Bias on the Structure and Properties of Ta Coatings Deposited Using Modulated Pulse Power Magnetron Sputtering, IEEE Trans. Plasma Sci., 2010, 38, p 3071–3078.

    CAS  Article  Google Scholar 

  14. 14.

    A. Hecimovic and A. Ehiasarian, Spatial and Temporal Evolution of Ion Energies in High Power Impulse Magnetron Sputtering Plasma Discharge, J. Appl. Phys., 2010, 108, p 063301.

    Article  Google Scholar 

  15. 15.

    M.W. Thompson II., The Energy Spectrum of Ejected Atoms during the High Energy Sputtering of Gold, Philos. Mag., 1968, 18, p 377–414.

    CAS  Article  Google Scholar 

  16. 16.

    C. Maszl, W. Breilmann, J. Benedikt and A. von Keudell, Origin of the Energetic Ions at the Substrate Generated during High Power Pulsed Magnetron Sputtering of Titanium, J. Phys. D Appl. Phys., 2014, 47, p 224002.

    Article  Google Scholar 

  17. 17.

    A. Anders, M. Panjan, R. Franz, J. Andersson and P. Ni, Drifting Potential Humps in Ionization Zones: the “Propeller Blades” of High Power Impulse Magnetron Sputtering, Appl. Phys. Lett., 2013, 103, p 144103.

    Article  Google Scholar 

  18. 18.

    D. Christie, Target Material Pathways Model for High Power Pulsed Magnetron Sputtering, J. Vac. Sci. Technol. A Vac. Surfaces Films, 2005, 23, p 330–335.

    CAS  Article  Google Scholar 

  19. 19.

    J. Emmerlich, S. Mráz, R. Snyders, K. Jiang and J.M. Schneider, The Physical Reason for the Apparently Low Deposition Rate during High-Power Pulsed Magnetron Sputtering, Vacuum, 2008, 82, p 867–870.

    CAS  Article  Google Scholar 

  20. 20.

    G. Janssen, P. Alkemade, V. Sivel, S.Y. Grachev and J.-D. Kamminga, Anisotropic Growth of Chromium Films during Sputter Deposition on Substrates in Planetary Motion, J. Vac. Sci. Technol. A Vac. Surfaces Films, 2004, 22, p 1773–1777.

    CAS  Article  Google Scholar 

  21. 21.

    Z. Zhao, S. Yalisove, Z. Rek and J. Bilello, Evolution of Anisotropic Microstructure and Residual Stress in Sputtered Cr Films, J. Appl. Phys., 2002, 92, p 7183–7192.

    CAS  Article  Google Scholar 

  22. 22.

    H. Ren and M. Sosnowski, Tantalum Thin Films Deposited by Ion Assisted Magnetron Sputtering, Thin Solid Films, 2008, 516, p 1898–1905.

    CAS  Article  Google Scholar 

  23. 23.

    S. Myers, J. Lin, R.M. Souza, W.D. Sproul and J.J. Moore, The β to α Phase Transition of Tantalum Coatings Deposited by Modulated Pulsed Power Magnetron Sputtering, Surf. Coat. Technol., 2013, 214, p 38–45.

    CAS  Article  Google Scholar 

  24. 24.

    M. Samuelsson, D. Lundin, J. Jensen, M.A. Raadu, J.T. Gudmundsson and U. Helmersson, On the Film Density using High Power Impulse Magnetron Sputtering, Surf. Coat. Technol., 2010, 205, p 591–596.

    CAS  Article  Google Scholar 

  25. 25.

    G. Greczynski, J. Patscheider, J. Lu, B. Alling, A. Ektarawong, J. Jensen, I. Petrov, J.E. Greene and L. Hultman, Control of Ti1− xSixN Nanostructure Via Tunable Metal-Ion Momentum Transfer during HIPIMS/DCMS Co-deposition, Surf. Coat. Technol., 2015, 280, p 174–184.

    CAS  Article  Google Scholar 

  26. 26.

    J. Patscheider, T. Zehnder and M. Diserens, Structure–Performance Relations in Nanocomposite Coatings, Surf. Coat. Technol., 2001, 146, p 201–208.

    Article  Google Scholar 

  27. 27.

    C. Gautier and J. Machet, Study of the Growth Mechanisms of Chromium Nitride Films Deposited by Vacuum ARC Evaporation, Thin Solid Films, 1997, 295, p 43–52.

    CAS  Article  Google Scholar 

  28. 28.

    C.-L. Chang, S.-G. Shih, P.-H. Chen, W.-C. Chen, C.-T. Ho and W.-Y. Wu, Effect of Duty Cycles on the Deposition and Characteristics of High Power Impulse Magnetron Sputtering Deposited TiN Thin Films, Surf. Coat. Technol., 2014, 259, p 232–237.

    CAS  Article  Google Scholar 

  29. 29.

    M. Lattemann, U. Helmersson and J. Greene, Fully Dense, Non-faceted 111-Textured High Power Impulse Magnetron Sputtering TiN Films Grown in the Absence of Substrate Heating and Bias, Thin Solid Films, 2010, 518, p 5978–5980.

    CAS  Article  Google Scholar 

  30. 30.

    S. Vepřek and S. Reiprich, A Concept for the Design of Novel Superhard Coatings, Thin Solid Films, 1995, 268, p 64–71.

    Article  Google Scholar 

  31. 31.

    M. Rudolph, D. Lundin, E. Foy, M. Debongnie, M.-C. Hugon and T. Minea, Influence of Backscattered Neutrals on the Grain Size of Magnetron-Sputtered TaN Thin Films, Thin Solid Films, 2018, 658, p 46–53.

    CAS  Article  Google Scholar 

  32. 32.

    J. Oliveira, F. Fernandes, R. Serra and A. Cavaleiro, On the Role of the Energetic Species in TiN Thin Film Growth by Reactive Deep Oscillation Magnetron Sputtering in Ar/N2, Thin Solid Films, 2018, 645, p 253–264.

    CAS  Article  Google Scholar 

  33. 33.

    M. Aiempanakit, U. Helmersson, A. Aijaz, P. Larsson, R. Magnusson, J. Jensen and T. Kubart, Effect of Peak Power in Reactive High Power Impulse Magnetron Sputtering of Titanium Dioxide, Surf. Coat. Technol., 2011, 205(20), p 4828–4831.

    CAS  Article  Google Scholar 

  34. 34.

    D. Magnfält, Fundamental Processes in Thin Film Growth. The Origin of Compressive Stress and the Dynamics of the Earlygrowth Stages, Linköping (2014).

Download references


This research is sponsored by FEDER funds through the program COMPETE and by national funds through FCT, under the projects UIDB/00285/2020, HardRings (AAC n.°02/SAICT/2017, projeto n.°29122).

Author information



Corresponding author

Correspondence to Fábio Ferreira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical focus in the Journal of Materials Engineering and Performance on Surface Engineering. The issue was organized by Dr. M.K. Banerjee, Malaviya National Institute of Technology, Jaipur.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ferreira, F., Cavaleiro, A. & Oliveira, J. Effect of Peak Power in Deep Oscillation Magnetron Sputtering on Film Properties. J. of Materi Eng and Perform (2021). https://doi.org/10.1007/s11665-021-05521-w

Download citation


  • Cr
  • CrN
  • DOMS
  • ionization
  • process-property relations
  • Ta
  • TiSiN