A Thermodynamic Analysis of Strengthening Mechanisms and Process-Structure-Property Relationships in Ti-Nb-Mo High-Strength Ferritic Alloy


We elucidate here the significant impact of processing and coiling temperature on microstructure and mechanical properties of Ti-Nb-Mo high-strength ferritic steel through thermodynamic modeling and quantitative analysis of strengthening mechanisms. The study clearly demonstrated that the moderate coiling temperature (570 °C) exhibited superior mechanical properties (yield strength of 773 MPa and elongation of 13%). At this coiling temperature, high percentage (58.64%) of nano-size (4-10 nm) precipitates were obtained with the finest average ferrite grain size of 3.34 ± 0.28 µm. The quantitative analysis of strengthening effects suggested that contributions of precipitation hardening from (Ti, Mo, Nb)C particles and grain refinement were 36.7 and 37.7%, respectively, and were remarkable. A precipitation model was utilized to predict the average size and volume fraction of precipitates and mass fraction of solute elements in the steel matrix. The thermodynamic model predicted precipitate size of 6.81 nm, consistent with the experimentally observed size of 7.01 ± 0.51 nm, when the steel was coiled at 570 °C for 2 h.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    K. Nishioka and K. Ichikawa, Progress in Thermomechanical Control of Steel Plates and their Commercialization, Sci. Technol. Adv. Mater., 2012, 13(2), p 023001.

    Article  CAS  Google Scholar 

  2. 2.

    Y. Funakawa, T. Shiozaki, K. Tomita, T. Yamamoto and E. Maeda, Development of High Strength Hot-Rolled Sheet Steel Consisting of Ferrite and Nanometer-Sized Carbides, ISIJ Int., 2004, 44(11), p 1945–1951.

    CAS  Article  Google Scholar 

  3. 3.

    N. Isasti, D. Jorge-Badiola, M.L. Taheri, L. Beatriz and P. Uranga, Effect of Composition and Deformation on Coarse-Grained Austenite Transformation in Nb-Mo Microalloyed Steels, Metall. Mater. Trans. A, 2011, 42(12), p 3729–3742.

    CAS  Article  Google Scholar 

  4. 4.

    X.P. Mao, Microalloying Technology on Thin Slab Casting and Direct Rolling Process, 1st ed. Metallurgical Industry Press, Beijing, 2008.

    Google Scholar 

  5. 5.

    N. Isasti, D. Jorge-Badiola, M.L. Taheri and P. Uranga, Microstructural Features Controlling Mechanical Properties in Nb-Mo Microalloyed Steels. Part I: Yield Strength, Metall. Mater. Trans. A, 2014, 45(11), p 4960–4971.

    CAS  Article  Google Scholar 

  6. 6.

    R.D.K. Misra, H. Nathani, J.E. Hartmann and F. Siciliano, Microstructural Evolution in a New 770 MPa Hot Rolled Nb-Ti Microalloyed Steel, Mater. Sci. Eng. A, 2005, 394(1-2), p 339–352.

    Article  CAS  Google Scholar 

  7. 7.

    G. Xu, X. Gan, G. Ma, F. Luo and H. Zou, The Development of Ti-Alloyed High Strength Microalloy Steel, Mater. Des., 2010, 31(6), p 2891–2896.

    CAS  Article  Google Scholar 

  8. 8.

    T. Gladman, Precipitation Hardening in Metals, Mater. Sci. Technol., 1999, 15(1), p 30–36.

    CAS  Article  Google Scholar 

  9. 9.

    H. Huang, G. Yang, G. Zhao, X. Mao, X. Gan, Q. Yin and H. Yi, Effect of Nb on the Microstructure and Properties of Ti-Mo Micro Alloyed High-Strength Ferritic Steel, Mater. Sci. Eng. A, 2018, 736, p 148–155.

    CAS  Article  Google Scholar 

  10. 10.

    K. Zhang, Z.D. Li, X.J. Sun, Q.L. Yong, J.W. Yang, Y.M. Li and P.L. Zhao, Development of Ti-V-Mo Complex Microalloyed Hot-Rolled 900-MPa-Grade High-Strength Steel, Acta Metall. Sin. (Engl. Lett.), 2015, 28(5), p 641–648.

    CAS  Article  Google Scholar 

  11. 11.

    Z. Zhang, X. Sun, Z. Li, X. Wang, Q. Yong and G. Wang, Effect of Nanometer-Sized Carbides and Grain Boundary Density on Performance of Fe-C-Mo-M (M= Nb, V or Ti) Fire Resistant Steels, Chin. J. Mater. Res., 2015, 29(4), p 269–276.

    CAS  Google Scholar 

  12. 12.

    J.H. Jang, Y.U. Heo, C.H. Lee, H.K.D.H. Bhadeshia and D.W. Suh, Interphase Precipitation in Ti-Nb and Ti-Nb-Mo Bearing Steel, Mater. Sci. Technol., 2013, 29(3), p 309–313.

    CAS  Article  Google Scholar 

  13. 13.

    P.K. Patra, S. Sam, M. Singhai, S.S. Hazra, G.D.J. Ram and S.R. Bakshi, Effect of Coiling Temperature on the Microstructure and Mechanical Properties of Hot-Rolled Ti-Nb Microalloyed Ultra High Strength Steel, Trans. Indian Inst. Met., 2017, 70(7), p 1773–1781.

    CAS  Article  Google Scholar 

  14. 14.

    R. Okamoto, A. Borgenstam and J. Ã…gren, Interphase Precipitation in Niobium-Microalloyed Steels, Acta Mater., 2010, 58(14), p 4783–4790.

    CAS  Article  Google Scholar 

  15. 15.

    F.Z. Bu, X.M. Wang, S.W. Yang, C.J. Shang and R.D.K. Misra, Contribution of Interphase Precipitation on Yield Strength in Thermomechanically Simulated Ti-Nb and Ti-Nb-Mo Microalloyed Steels, Mater. Sci. Eng. A, 2015, 620, p 22–29.

    Article  CAS  Google Scholar 

  16. 16.

    Z. Wang, X. Sun, Z. Yang, Q. Yong, C. Zhang, Z. Li and Y. Weng, Carbide Precipitation in Austenite of a Ti-Mo-Containing Low-Carbon Steel During Stress Relaxation, Mater. Sci. Eng. A, 2013, 573, p 84–91.

    CAS  Article  Google Scholar 

  17. 17.

    Y.W. Kim, J.H. Kim, S.G. Hong and C.S. Lee, Effects of Rolling Temperature on the Microstructure and Mechanical Properties of Ti-Mo Microalloyed Hot-Rolled High Strength Steel, Mater. Sci. Eng. A, 2014, 605, p 244–252.

    CAS  Article  Google Scholar 

  18. 18.

    B. Dutta, E. Valdes and C.M. Sellars, Mechanism and Kinetics of Strain Induced Precipitation of Nb (C, N) in Austenite, Acta Metall. Mater., 1992, 40(4), p 653–662.

    CAS  Article  Google Scholar 

  19. 19.

    M. Hillert and L.I. Staffansson, Regular-Solution Model for Stoichiometric Phases and Ionic Melts, Acta Chem. Scand., 1970, 24(10), p 3618–3626.

    CAS  Article  Google Scholar 

  20. 20.

    Q.L. Yong, Secondary Phase in Steels, 1st ed. Metallurgical Industry Press, Beijing, 2006.

    Google Scholar 

  21. 21.

    K.A. Taylor, Solubility Products for Titanium-, Vanadium-, and Niobium-Carbide in Ferrite, Scr. Metall. Mater., 1995, 32(1), p 7–12.

    CAS  Article  Google Scholar 

  22. 22.

    J.C. Cao, X.L. Zhou, L. Deng, Q.L. Yong and X.J. Sun, Solubility Product of MoC with NaCl Type Cubic Crystal Structure in Iron, Adv. Mater. Res., 2012, 476, p 281–285.

    Article  CAS  Google Scholar 

  23. 23.

    M.G. Mecozzi, J. Sietsma and S. van der Zwaag, Analysis of γ→α Transformation in a Nb Micro-Alloyed C-Mn Steel by Phase Field Modeling, Acta Mater., 2006, 54(5), p 1431–1440.

    CAS  Article  Google Scholar 

  24. 24.

    E. Courtois, T. Epicier and C. Scott, Characterisation of Niobium Carbide and Carbonitride Evolution Within Ferrite: Contribution of Transmission Electron Microscopy and Advanced Associated Techniques, Mater. Sci. Forum, 2005, 500, p 669–676.

    Article  Google Scholar 

  25. 25.

    C. Fossaert, G. Rees, T. Maurickx and H.K.D.H. Bhadeshia, The Effect of Niobium on the Hardenability of Microalloyed Austenite, Metall. Mater. Trans. A, 1995, 26(1), p 21–30.

    Article  Google Scholar 

  26. 26.

    J.D. Robson, Modelling the Overlap of Nucleation, Growth and Coarsening During Precipitation, Acta Mater., 2004, 52(15), p 4669–4676.

    CAS  Article  Google Scholar 

  27. 27.

    A. Deschamps and Y. Brechet, Influence of Predeformation and Ageing of an Al-Zn-Mg alloy—II. MODELING of Precipitation Kinetics and Yield Stress, Acta Mater., 1998, 47(1), p 293–305. ((in English))

    Article  Google Scholar 

  28. 28.

    B. Dutta, E.J. Palmiere and C.M. Sellars, Modelling the Kinetics of Strain Induced Precipitation in Nb Microalloyed Steels, Acta Mater., 2001, 49(5), p 785–794.

    CAS  Article  Google Scholar 

  29. 29.

    J.H. Jang, C.H. Lee, Y.U. Heo and D.W. Suh, Stability of (Ti, M) C (M= Nb, V, Mo and W) Carbide in Steels Using First-Principles Calculations, Acta Mater., 2012, 60(1), p 208–217. (in English)

    CAS  Article  Google Scholar 

  30. 30.

    M. Gouné, P. Maugis and F. Danoix, Nucleation and Growth of Carbo-nitride Nanoparticles in α-Fe-based Alloys and Associated Interfacial Process, Nanotechnol. Rev., 2015, 4(6), p 517–532.

    Google Scholar 

  31. 31.

    W.J. Liu and J.J. Jonas, Nucleation Kinetics of Ti Carbonitride in Microalloyed Austenite, Metall. Trans. A, 1989, 20(4), p 689–697.

    Article  Google Scholar 

  32. 32.

    M. Perez, M. Dumont and D. Acevedo-Reyes, Implementation of Classical Nucleation and Growth Theories for Precipitation, Acta Mater., 2008, 56(9), p 2119–2132.

    CAS  Article  Google Scholar 

  33. 33.

    J.E. Bailey and P.B. Hirsch, The Dislocation Distribution, Flow Stress, and Stored Energy in Cold-Worked Polycrystalline Silver, Philos. Mag., 1960, 5(53), p 485–497.

    CAS  Article  Google Scholar 

  34. 34.

    S. Okaguchi and T. Hashimoto, Computer Model for Prediction of Carbonitride Precipitation During Hot Working in Nb-Ti Bearing HSLA Steels, ISIJ Int., 1992, 32(3), p 283–290.

    CAS  Article  Google Scholar 

  35. 35.

    W.F. Gale and T.C. Totemeier, Smithells Metals Reference Book, 8th ed. Elsevier, Amsterdam, 2004.

    Google Scholar 

  36. 36.

    R. Chang and L.J. Graham, Edge Dislocation Core Structure and the Peierls Barrier in Body-Centered Cubic Iron, Phys. Status Solidi B, 1966, 18(1), p 99–103.

    CAS  Article  Google Scholar 

  37. 37.

    A.P. Sutton and R.W. Balluffi, Interfaces in Crystalline Materials, Oxford University Press, New York, 1995.

    Google Scholar 

  38. 38.

    X. Mao, X. Huo, X. Sun and Y. Chai, Strengthening Mechanisms of a New 700 MPa Hot Rolled Ti-microalloyed Steel Produced by Compact Strip Production, J. Mater. Process. Technol., 2010, 210(12), p 1660–1666.

    CAS  Article  Google Scholar 

  39. 39.

    Y. Hui, H. Pan, N. Zhou, R.H. Li, W.Y. Li and K. Liu, Study on Strengthening Mechanism of 650 MPa Grade VN Microalloyed Automobile Beam Steel, Acta Metall. Sin. (Chin. Ed.), 2015, 51(12), p 1481–1488.

    CAS  Google Scholar 

  40. 40.

    L.M. Brown and R.K. Ham, Strengthening Methods in Crystals, 1st ed. Applied Science Publishers Ltd., London, 1971.

    Google Scholar 

  41. 41.

    Y.F. Shen, C.M. Wang and X. Sun, A Micro-Alloyed Ferritic Steel Strengthened by Nanoscale Precipitates, Mater. Sci. Eng. A, 2011, 528(28), p 8150–8156.

    CAS  Article  Google Scholar 

  42. 42.

    R. Soto, W. Saikaly, X. Bano, C. Issartel, G. Rigaut and A. Charai, Statistical and Theoretical Analysis of Precipitates in Dual-Phase Steels Microalloyed with Titanium and their Effect on Mechanical Properties, Acta Mater., 1999, 47(12), p 3475–3481.

    CAS  Article  Google Scholar 

  43. 43.

    S. Yuan, G. Liang and X. Zhang, Interaction Between Elements Nb and Mo During Precipitation in Microalloyed Austenite, J. Iron Steel Res. Int., 2010, 17(9), p 60–63.

    CAS  Article  Google Scholar 

Download references


The experimental studies conducted at WUST were thermodynamically modeled at UTEP. The authors (G. H. Wu and K. M. Wu) are grateful to the financial support from National Natural Science Foundation of China under Grant Nos. U1532268, U20A20279, and 51671149, Wuhan Science and Technology Program under Grant No. 2019010701011382, Excellent Young and Middle-aged Science and Technology Innovation Team in Colleges and Universities of Hubei Province under Grant No.T201903, and the 111 project under Grant No. 18018.

Author information



Corresponding authors

Correspondence to K. M. Wu or R. D. K. Misra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, C.Y., Dong, H.Y., Wu, G.H. et al. A Thermodynamic Analysis of Strengthening Mechanisms and Process-Structure-Property Relationships in Ti-Nb-Mo High-Strength Ferritic Alloy. J. of Materi Eng and Perform (2021). https://doi.org/10.1007/s11665-021-05517-6

Download citation


  • coiling temperature
  • grain refinement
  • microalloyed steel
  • precipitation
  • strengthening mechanism