Effect of Heat Treatment on Microstructure and Micro-Wear Resistance of Selective Laser Melted Mg-Al-Zn Alloy with La2O3 Addition


In this study, the microstructure, intermetallic phase, microhardness and wear resistance of unheated and heat-treated Mg-6Al-1Zn-xLa (x = 0.5, 1, 2) alloy that fabricated by selective laser melting was studied. In this paper, La was added by adding La2O3. The grain size was reduced with the La addition which reached smallest with 1% La addition (1.58 μm). The scanning electron microscopy, energy-dispersive x-ray spectroscopy and x-ray diffraction results showed that the secondary phase of Al11La3 was formed during the eutectic reaction. Al11La3 phase still remains after solution treatment at 400 °C for 4h, short rod-shaped discontinuous Mg17Al12 is formed at the grain boundary during aging treatment. The mechanical properties of samples are further improved by aging treatment, microhardness increases with the increase in La content and its value reaches 140 HV for aging-treated Mg-6Al-1Zn-2La. The micro-scratch results show that the wear resistance is related to the La percent and heat treatment method. The residual depth of samples indicates that the addition of La can reduce the micro-wear and short rod-like precipitation of β phase which generates in aging treatment can decrease residual depth as well.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.


  1. 1.

    X.B. Liu, R.S. Chen and E.H. Han, Effects of Ageing Treatment on Microstructures and Properties of Mg-Gd-Y-Zr Alloys with and Without Zn Additions, J. Alloy. Compd., 2008, 465(1–2), p 232–238.

    CAS  Article  Google Scholar 

  2. 2.

    Y. Estrin, S.S. Nene, B.P. Kashyap, N. Prabhu and T. Al-Samman, New Hot Rolled Mg-4Li-1Ca Alloy: A Potential Candidate for Automotive and Biodegradable Implant Applications, Mater. Lett., 2016, 173, p 252–256.

    CAS  Article  Google Scholar 

  3. 3.

    L. Zhang, Z.Y. Cao, Y.B. Liu, G.H. Su and L.R. Cheng, Effect of Al Content on the Microstructures and Mechanical Properties of Mg-Al alloys, Mater. Sci. Eng. A, 2009, 508(1–2), p p129-133.

    Article  Google Scholar 

  4. 4.

    M. Zhang, C.J. Chen, C. Liu and S.Q. Wang, Study on Porous Mg-Zn-Zr ZK61 Alloys Produced by Laser Additive Manufacturing, Metals, 2018, 8(8), p 635–653.

    Article  Google Scholar 

  5. 5.

    A. Simch and H. Pohl, Direct Laser Sintering of Iron-Graphite Powder Mixture, Mater. Sci. Eng. A, 2004, 383(2), p 191–200.

    Article  Google Scholar 

  6. 6.

    M. Salehi, S. Maleksaeedi, H. Farnoush, N.M.L. Sharon, G.K. Meenashisundaram and M. Gupta, An Investigation into Interaction Between Magnesium Powder and Ar Gas: Implications for Selective Laser Melting of Magnesium, Powder Technol., 2018, 333, p 252–261.

    CAS  Article  Google Scholar 

  7. 7.

    D. Herzog, V. Seyda, E. Wycisk and C. ClausEmmelmann, Additive Manufacturing of Metals, Acta Mater., 2016, 117, p 371–392.

    CAS  Article  Google Scholar 

  8. 8.

    B.C. Zhang, H.L. Liao and C. Coddet, Effects of Processing Parameters on Properties of Selective Laser Melting Mg-9%Al Powder Mixture, Mater. Des., 2012, 34, p 753–758.

    CAS  Article  Google Scholar 

  9. 9.

    Y. Li, J. Zhou, P. Pavanram, M.A. Leeflang, L.I. Fockaert, B. Pouran, N. Tümer, K.U. Schröder, J.M.C. Mol, H. Weinans, H. Jahr and A.A. Zadpoor, Additively Manufactured Biodegradable Porous Magnesium, Acta Biomater., 2018, 67, p 378–392.

    CAS  Article  Google Scholar 

  10. 10.

    A.K. Chaubey, S. Scudino, K.G. Prashanth and J. Eckert, Microstructure and Mechanical Properties of Mg-Al-Based Alloy Modified with Cerium, Mater. Sci. Eng. A, 2015, 625, p 46–49.

    CAS  Article  Google Scholar 

  11. 11.

    W.J. Liu, F.H. Cao, L.R. Chang, Z. Zhang and J.Q. Zhang, Effect of Rare Earth Element Ce and La on Corrosion Behavior of AM60 Magnesium Alloy, Corros. Sci., 2009, 51(6), p 1334–1343.

    CAS  Article  Google Scholar 

  12. 12.

    J.B. Liu, K. Zhang, J.T. Han, X.G. Li, Y.J. Li, M.L. Ma, J.W. Yuan, G.L. Shi, M. Li and C.F. Lu, Study on the Microstructure and Mechanical Properties of WE71 Magnesium Alloy, Mater. Sci. Eng. A, 2015, 625, p 107–113.

    CAS  Article  Google Scholar 

  13. 13.

    H. Somekawa, Y. Osawa, A. Singh, K. Washio, A. Kato and M. Toshiji, Effect of Micro-alloying Elements on Deformation Behavior in Mg-Y Binary Alloys, Mater. Trans., 2014, 55(1), p 182–187.

    CAS  Article  Google Scholar 

  14. 14.

    G.X. Xu, Rare Earth, Metallurgical Industry Press, Beijing, 1995, p 56

    Google Scholar 

  15. 15.

    K.M. Asl, A. Masoudi and F. Khomamizadeh, The Effect of Different Rare Earth Elements Content on Microstructure, Mechanical and Wear Behavior of Mg-Al-Zn Alloy, Mater. Sci. Eng. A, 2010, 527(7–8), p 2027–2035.

    Google Scholar 

  16. 16.

    H. Yan and Z.W. Wang, Effect of Heat Treatment on Wear Properties of Extruded AZ91 Alloy Treated with Yttrium, J. Rare Earths, 2016, 34(3), p 308–314.

    CAS  Article  Google Scholar 

  17. 17.

    J.H. Zhang, M.L. Zhang, J. Meng, R.Z. Wu and D.X. Tang, Microstructures and Mechanical Properties of Heat-Resistant High-Pressure Die-Cast Mg-4Al-xLa-0.3Mn (x = 1, 2, 4, 6) Alloys, Mater. Sci. Eng. A, 2010, 527(10–11), p 2527–2537.

    Article  Google Scholar 

  18. 18.

    Q. Yang, F.Q. Bu, T. Zheng, F.Z. Meng, X.J. Liu, D.P. Zhang, X. Qiu and J. Meng, Influence of Trace Sr Additions on the Microstructures and the Mechanical Properties of Mg-Al-La-Based Alloy, Mater. Sci. Eng. A, 2014, 619, p 256–264.

    CAS  Article  Google Scholar 

  19. 19.

    X. Niu, H. Fu and J. Fu, Microstructure and Mechanical Properties of Selective Laser Melted Mg-9wt%Al Powder Mixture, Mater. Lett., 2018, 221, p 4–7.

    CAS  Article  Google Scholar 

  20. 20.

    X.D. Luo, D.L. Qu and G.D. Zhang, Influence of Lanthana on Composition and Structure of Mg-Al Spinel Material Prepared from Decomposed Magnesite, Chin. Rare Earths, 2012, 33, p 59–63.

    CAS  Google Scholar 

  21. 21.

    T. Sakamoto, S. Kukeya and H. Ohfuji, Microstructure and Room and High Temperature Mechanical Properties of Ultrafine Structured Al-5 wt%Y2O3 and Al-5 wt%La2O3 Nanocomposites Fabricated by Mechanical Alloying and Hot Pressing, Mater. Sci. Eng. A, 2019, 748, p 428–433.

    CAS  Article  Google Scholar 

  22. 22.

    C.X. He, S.Z. Bin, P. Wu, C.D. Gao, P. Feng, Y.W. Yang, L. Liu, Y.Z. Zhou, M.C. Zhao, S. Yang and C.J. Shuai, Microstructure Evolution and Biodegradation Behavior of Laser Rapid Solidified Mg-Al-Zn Alloy, Metals, 2017, 7(3), p 105–116.

    Article  Google Scholar 

  23. 23.

    H. Men and Z. Fan, Effects of Solute Content on Grain Refinement in an Isothermal Melt, Acta Mater., 2011, 59(7), p 2704–2712.

    CAS  Article  Google Scholar 

  24. 24.

    Y. Ali, D. Qiu, B. Jiang, F.S. Pan and M.X. Zhang, Current Research Progress in Grain Refinement of Cast Magnesium Alloys: A Review Article, J. Alloy. Compd., 2015, 619, p 639–651.

    CAS  Article  Google Scholar 

  25. 25.

    L. Du, Effect of Rare Earth La on the Microstructure and Properties of AZ61 Magnesium Alloy, Nanchang University, Nanchang City, Master’s Thesis (2012)

  26. 26.

    K.W. Wei, M. Gao, Z.M. Wang and X.Y. Zeng, Effect of Energy Input on Formability, Microstructure and Mechanical Properties of Selective Laser Melted AZ91D Magnesium Alloy, Mater. Sci. Eng. A, 2014, 611, p 212–222.

    CAS  Article  Google Scholar 

  27. 27.

    E. Contreras-Piedras, R. Esquivel-Gonzalez, V.M. López-Hirata, M.L. Saucedo-Muñoz, A.M. Paniagua-Mercado and H.J. Dorantes-Rosales, Growth Kinetics of Cellular Precipitation in a Mg-8.5Al-0.5Zn-0.2Mn (wt.%) Alloy, Mater. Sci. Eng. A, 2010, 527(29–30), p 7775–7778.

    Article  Google Scholar 

  28. 28.

    L.Y. Jiang, D.F. Zhang, X.W. Fan, F. Guo, G.S. Hu, H.S. Xue and F.S. Pan, The Effect of Sn Addition on Aging Behavior and Mechanical Properties of Wrought AZ80 Magnesium Alloy, J. Alloy. Compd., 2015, 620, p 368–375.

    CAS  Article  Google Scholar 

  29. 29.

    W. Tang, E.H. Han, Y.B. Xu and L. Liu, Effect of Heat Treatment on Microstructure and Properties of AZ80 Magnesium Alloy, Acta Metall. Sin., 2005, 41, p 1199–1206.

    CAS  Google Scholar 

  30. 30.

    K.M. Asl, A. Tari and F. Khomamizadeh, The Effect of Different Content of Al, RE and Si Element on the Microstructure, Mechanical and Creep Properties of Mg-Al Alloys, Mater. Sci. Eng. A, 2009, 523(1–2), p 1–6.

    Google Scholar 

  31. 31.

    J.F. Archard, Contact and Rubbing of Flat Surfaces, J. Appl. Phys., 1953, 24(8), p 981–988.

    Article  Google Scholar 

  32. 32.

    A. Kumar, G.K. Meenashisundaram, V. Manakari, G. Parande and M. Gupta, Lanthanum Effect on Improving CTE, Damping, Hardness and Tensile Response of Mg-3Al Alloy, J. Alloy. Compd., 2017, 695, p 3612–3620.

    CAS  Article  Google Scholar 

Download references


This research was funded by the State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology [Grant No. SKLAB02014006]; the Suzhou Science and Technology Bureau [Grant No. SYG201642]; the open fund for Jiangsu Key Laboratory of Advanced Manufacturing Technology [Grant No. HGAMTL-1701]; and the Jiangsu province 333 talent Project [Grant No. BRA2017098].

Author information



Corresponding author

Correspondence to Changjun Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Chen, C. & Zhang, M. Effect of Heat Treatment on Microstructure and Micro-Wear Resistance of Selective Laser Melted Mg-Al-Zn Alloy with La2O3 Addition. J. of Materi Eng and Perform (2021). https://doi.org/10.1007/s11665-021-05516-7

Download citation


  • Heat treatment
  • Mg-Al-Zn alloy
  • microstructure
  • micro-scratch
  • rare earth
  • selective laser melting