Synthesis and Characterization of Ti6Al4V-Nano-ZrO2 Composite Cladding on Ti6Al4V Substrate Using Fiber Laser

Abstract

The synthesis and characterization of Ti6Al4V-nano-ZrO2 composite coatings on Ti6Al4V substrate using laser cladding method have been carried out. The effect of laser power and scanning speed on the clad layer morphology, microhardness, phase appearance, and tribological behavior of the composite cladding has been investigated. The formation of dendrite microstructure with retention of agglomerated nano-ZrO2 powder and metallic oxides such as TiO2, Al2O3, ZrO2 increases hardness and wear resistance of the cladding surface remarkably. The average microhardness of the cladding surface increased 4 times that of the substrate material. The discontinuous but uniformly dispersed reinforcement of ZrO2 is formed during the melting and solidification process. Cracks and pores and discontinuous phases of ZrO2 are also found in some of the samples. These discontinuous sites can retain lubricant; hence, the tribological behavior of the laser cladding composite coating may improve. This method establishes the reactive in situ formation of hard composite coating (TiO2-Al2O3-ZrO2) with a lower coefficient of friction than the Ti6Al4V using laser irradiation of wavelength 1070 nm.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    H. Zhou, F. Li, B. He, J. Wang and B. de Sun, Air Plasma Sprayed Thermal Barrier Coatings on Titanium Alloy Substrates, Surf. Coat. Technol., 2007, 201(16–17), p 7360–7367.

    CAS  Article  Google Scholar 

  2. 2.

    V. Koshuro, A. Fomin and I. Rodionov, Composition , Structure and Mechanical Properties of Metal Oxide Coatings Produced on Titanium Using Plasma Spraying and Modi Fi Ed by Micro-Arc Oxidation, Ceram. Int., 2018, 44(11), p 12593–12599. https://doi.org/10.1016/j.ceramint.2018.04.056

    CAS  Article  Google Scholar 

  3. 3.

    K.S. Selivanov, A.M. Smyslov, Y.M. Dyblenko and I.P. Semenova, Erosive Wear Behavior of Ti/Ti(V, Zr)N Multilayered PVD Coatings for Ti-6Al-4V Alloy, Wear, 2019, 419, p 160–166.

    Article  Google Scholar 

  4. 4.

    P. Wiecinski, J. Smolik, H. Garbacz, J. Bonarski, A. Mazurkiewicz and K.J. Kurzydłowski, Microstructure and Properties of Metal/Ceramic and Ceramic/Ceramic Multilayer Coatings on Titanium Alloy Ti6Al4V, Surf. Coatings Technol., 2017, 309, p 709–718.

    CAS  Article  Google Scholar 

  5. 5.

    R. Sitek, J. Kaminski, J. Borysiuk, H. Matysiak, K. Kubiak and K.J. Kurzydlowski, Microstructure and Properties of Titanium Aluminides on Ti6Al4V Titanium Alloy Produced by Chemical Vapor Deposition Method, Intermetallics, 2013, 36, p 36–44.

    CAS  Article  Google Scholar 

  6. 6.

    G. Xu and X. Shen, Fabrication of SiO2 Nanoparticles Incorporated Coating Onto Titanium Substrates by the Micro Arc Oxidation to Improve the Wear Resistance, Surf. Coat. Technol., 2019, 364, p 180–186.

    CAS  Article  Google Scholar 

  7. 7.

    B.A. Obadele, A. Andrews, P.A. Olubambi, M.T. Mathew and S. Pityana, Effect of ZrO2 Addition on the Dry Sliding Wear Behavior of Laser Clad Ti6Al4V Alloy, Wear, 2015, 328–329, p 295–300. https://doi.org/10.1016/j.wear.2015.02.056

    CAS  Article  Google Scholar 

  8. 8.

    C. Xia, Z. Zhang, Z. Feng, B. Pan, X. Zhang, M. Ma and R. Liu, Effect of Zirconium Content on the Microstructure and Corrosion Behavior of Ti-6Al-4V-XZr Alloys, Corros. Sci., 2016, 112, p 687–695. https://doi.org/10.1016/j.corsci.2016.09.012

    CAS  Article  Google Scholar 

  9. 9.

    Y. Liu, W. Liu, Y. Ma, C. Liang, C. Liu, C. Zhang and Q. Cai, Microstructure and Wear Resistance of Compositionally Graded Ti–Al Intermetallic Coating on Ti6Al4V Alloy Fabricated by Laser Powder Deposition, Surf. Coatings Technol., 2018, 353, p 32–40. https://doi.org/10.1016/j.surfcoat.2018.08.067

    CAS  Article  Google Scholar 

  10. 10.

    S. Kumar, A. Mandal, A.K. Das and A.R. Dixit, Parametric Study and Characterization of AlN-Ni-Ti6Al4V Composite Cladding on Titanium Alloy, Surf. Coat. Technol., 2018, 349, p 37–49.

    CAS  Article  Google Scholar 

  11. 11.

    M.L. Lepule, B.A. Obadele, A. Andrews and P.A. Olubambi, Corrosion and Wear Behaviour of ZrO2 Modified NiTi Coatings on AISI 316 Stainless Steel, Surf. Coat. Technol., 2015, 261, p 21–27.

    CAS  Article  Google Scholar 

  12. 12.

    G. Ma, S. Yan, D. Wu, Q. Miao, M. Liu and F. Niu, Microstructure Evolution and Mechanical Properties of Ultrasonic Assisted Laser Clad Yttria Stabilized Zirconia Coating, Ceram. Int., 2017, 43(13), p 9622–9629.

    CAS  Article  Google Scholar 

  13. 13.

    I. Yamashita, M. Kudo and K. Tsukuma, Development of Highly Transparent Zirconia Ceramics, 12 TOSOH Res. Technol., 2012, 56(201), p 11–16.

    CAS  Google Scholar 

  14. 14.

    J. Wilkes, Y. Hagedorn, W. Meiners and K. Wissenbach, Additive Manufacturing of ZrO2-Al2O3 ceramic components by selective laser melting, Rapid Prototyping J., 2013, 1, p 51–57.

    Article  Google Scholar 

  15. 15.

    A. Hattal, T. Chauveau, M. Djemai, J.J. Fouchet, B. Bacroix and G. Dirras, Effect of Nano-Yttria Stabilized Zirconia Addition on the Microstructure and Mechanical Properties of Ti6Al4V Parts Manufactured by Selective Laser Melting, Mater. Des., 2019, 180, p 107909. https://doi.org/10.1016/j.matdes.2019.107909

    CAS  Article  Google Scholar 

  16. 16.

    T.A. Schaedler, O. Fabrichnaya and C.G. Levi, Phase Equilibria in the TiO2-YO1.5-ZrO2 System, J. Eur. Ceram. Soc., 2008, 28(13), p 2509–2520.

    CAS  Article  Google Scholar 

  17. 17.

    R. Chakraborty, M.S. Raza, S. Datta and P. Saha, Synthesis and Characterization of Nickel Free Titanium-Hydroxyapatite Composite Coating over Nitinol Surface Through In-Situ Laser Cladding and Alloying, Surf. Coatings Technol., 2018, 358, p 539–550. https://doi.org/10.1016/j.surfcoat.2018.11.036

    CAS  Article  Google Scholar 

  18. 18.

    Q. Zhuang, P. Zhang, M. Li, H. Yan and Z. Yu, Microstructure, Wear Resistance and Oxidation Behavior of Ni-Ti-Si Coatings Fabricated on Ti6Al4V by Laser Cladding. Materials, 2017, 10(11), p 1248. https://doi.org/10.3390/ma10111248

    CAS  Article  Google Scholar 

  19. 19.

    S. Madeira, A.M.P. Pinto, L.C. Rodrigues, O. Carvalho, G. Miranda, R.L. Reis, J. Caramês and F.S. Silva, Effect of Sintering Pressure on Microstructure and Mechanical Properties of Hot-Pressed Ti6Al4V-ZrO2 Materials, Mater. Des., 2017, 120, p 394–403. https://doi.org/10.1016/j.matdes.2017.02.038

    CAS  Article  Google Scholar 

  20. 20.

    F. Muhaffel, M. Kaba, G. Cempura, B. Derin, A. Kruk, E. Atar and H. Cimenoglu, Influence of Alumina and Zirconia Incorporations on the Structure and Wear Resistance of Titania-Based MAO Coatings, Surf. Coat. echnol., 2019, 377, p 124900.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. K. Parida.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Murmu, A.M., Parida, S.K. & Das, A.K. Synthesis and Characterization of Ti6Al4V-Nano-ZrO2 Composite Cladding on Ti6Al4V Substrate Using Fiber Laser. J. of Materi Eng and Perform (2021). https://doi.org/10.1007/s11665-021-05476-y

Download citation

Keywords

  • cladding
  • composite
  • laser energy density
  • reinforcement
  • synthesis
  • titania
  • zirconia