The Passivity of Pure Nickel in Alkaline Solution under Different Temperatures: Electrochemical Verification and First-Principles Calculation


Properties of a passive film formed on pure nickel in an anaerobic alkaline solution are investigated by a first-principles calculation and electrochemical experiments in this work, and both results show agreement with each other. The formation energy of nickel vacancies is lower than that of oxygen vacancies in the NiO film, which is consistent with the deduction of the point defect model in which nickel vacancies impart p-type semiconducting character to the passive film, as confirmed by Mott–Schottky analysis. The density of nickel vacancies (approximately 1021 cm−3) in the passive film increases with temperature but decreases with the film-formation potential. The thickness of the passive film increases linearly with the film-formation potential, as verified both by Auger electron spectroscopy and electrochemical impedance spectroscopy. The diffusion coefficient of the nickel vacancies increases from 10−18 to 10−16 cm2/s as the temperature rises from 298 to 348 K, respectively, in experiments using high-field equations and first-principles calculation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    A.F. Rowcliffe, L.K. Mansur and D.T. Hoelzer, Perspectives on Radiation Effects in Nickel-Base Alloys for Applications in Advanced Reactors, J. Nucl. Mater., 2009, 392(2), p 341–352.

    CAS  Article  Google Scholar 

  2. 2.

    J. Scherer, B.M. Ocko and O.M. Magnussen, Structure, Dissolution, and Passivation of Ni (111) Electrodes in Sulfuric Acid Solution: An In Situ STM, x-ray Scattering, and Electrochemical Study, Electrochim. Acta, 2003, 48, p 1169–1191.

    CAS  Article  Google Scholar 

  3. 3.

    H.J. Jang, K.N. Oh and S.J. Ahn, Determination of the Diffusivity of Cation Vacancy in a Passive Film of Ni Using Mott–Schottky Analysis and In Situ Ellipsometry, Met. Mater. Int., 2014, 20, p 277–283.

    CAS  Article  Google Scholar 

  4. 4.

    K.J. Park, S.J. Ahn and H.S. Kwon, Effects of Solution Temperature on the Kinetic Nature of Passive Film on Ni, Electrochim. Acta, 2011, 56, p 1662–1669.

    CAS  Article  Google Scholar 

  5. 5.

    M. Iida and T. Ohtsuka, Ellipsometry of Passive Oxide Films on Nickel in Acidic Sulfate Solution, Corros. Sci., 2007, 49, p 1408–1419.

    CAS  Article  Google Scholar 

  6. 6.

    B.W. Zhang, J.S. Wu and X.G. Li, Passivation of Nickel Nanoneedles in Aqueous Solutions, J. Phys. Chem. C, 2014, 118, p 9073–9077.

    CAS  Article  Google Scholar 

  7. 7.

    H.J. Jang, C.J. Park and H.S. Kwon, Photoelectrochemical Analysis on the Passive Film Formed on Ni in pH 8.5 Buffer Solution, Electrochim. Acta, 2005, 50, p 3503–3508.

    CAS  Article  Google Scholar 

  8. 8.

    E. Sikora and D.D. Macdonald, Nature of the Passive Film on Nickel, Electrochim. Acta, 2002, 48, p 69–77.

    CAS  Article  Google Scholar 

  9. 9.

    D.D. Macdonald and S.I. Smedley, An Electrochemical Impedance Analysis of Passive Films on Nickel (111) in Phosphate Buffer Solutions, Electrochim. Acta, 1990, 35, p 1949–1956.

    CAS  Article  Google Scholar 

  10. 10.

    R.P. Frankenthal and J. Kruger, Passivity of Metals, Corros. Sci., 1980, 7, p 341–355.

    Google Scholar 

  11. 11.

    S.L. Wang, H.X. Li and Y.U. Jeong, Effects of Electrolyte pH on the Electrochemical Behavior of Fe-Based Bulk Metallic Glass, Met. Mater. Int., 2012, 18, p 791–797.

    CAS  Article  Google Scholar 

  12. 12.

    S.A. Park, S.H. Lee and J.G. Kim, Effect of Chromium on the Corrosion Behavior of Low Alloy Steel in Sulfuric Acid, Met. Mater. Int., 2012, 18, p 975–987.

    CAS  Article  Google Scholar 

  13. 13.

    D.D. Macdonald, Passivity—The Key to Our Metals-Based Civilization, Pure Appl. Chem., 2009, 71, p 951–978.

    Article  Google Scholar 

  14. 14.

    M.U. Macdonald and D.D. Macdonald, Theoretical Analysis of the Effects of Alloying Elements on Distribution Functions of Passivity Breakdown, J. Electrochem. Soc., 1989, 136, p 961–967.

    Article  Google Scholar 

  15. 15.

    E. Sikora, J. Sikora and D.D. Macdonald, A New Method for Estimating the Diffusivities of Vacancies in Passive Films, Electrochim. Acta, 1996, 41, p 783–789.

    CAS  Article  Google Scholar 

  16. 16.

    C. Boissy, B. Ter-Ovanessian and N. Mary, Correlation between Predictive and Descriptive Models to Characterize the Passive Film—Study of Pure Chromium by Electrochemical Impedance Spectroscopy, Electrochim. Acta, 2015, 174, p 430–437.

    CAS  Article  Google Scholar 

  17. 17.

    Y.F. Cheng, C. Yang and J.L. Luo, Determination of the Diffusivity of Point Defects in Passive Films on Carbon Steel, Thin Solid Films, 2002, 416, p 169–173.

    CAS  Article  Google Scholar 

  18. 18.

    A. Fattah-Alhosseini, M.A. Golozar and A. Saatchi, Effect of Solution Concentration on Semiconducting Properties of Passive Films Formed on Austenitic Stainless Steels, Corros. Sci., 2010, 52, p 205–209.

    CAS  Article  Google Scholar 

  19. 19.

    A.N. Xu, C.F. Dong, X. Wei and X.G. Li, Ab Initio Calculation and Electrochemical Verification of a Passivated Surface on Copper with Defects in 0.1 M NaOH, Electrochem. Commun., 2016, 68, p 62–66.

    CAS  Article  Google Scholar 

  20. 20.

    D.C. Kong, A.N. Xu and C.F. Dong, Electrochemical Investigation and Ab Initio Computation of Passive Film Properties on Copper in Anaerobic Sulphide Solutions, Corros. Sci., 2017, 116, p 34–43.

    CAS  Article  Google Scholar 

  21. 21.

    P. Xu, S.Y. Chen and B. Huang, Stability and Electronic Structure of Cu2ZnSnS4 Surfaces: First-Principles Study, Phys. Rev. B, 2013, 88, p 3739–3744.

    Google Scholar 

  22. 22.

    L.W. Wang, High Chalcocite: A Solid–Liquid Hybrid Phase, Phys. Rev. Lett., 2012, 108, p 341–344.

    Google Scholar 

  23. 23.

    W. Zhao, M. Bajdich, S. Carey, A. Vojvodic, J.K. Norskov and C.T. Campbell, Water Dissociative Adsorption on NiO (111): Energetics and Structure of the Hydroxylated Surface, ACS Catal., 2016, 6, p 7377–7384.

    CAS  Article  Google Scholar 

  24. 24.

    D.C. Kong, C.F. Dong and X.Q. Ni, Long-Term Polarisation and Immersion for Copper Corrosion in High-Level Nuclear Waste Environment, Mater. Corros., 2017, 68(10), p 1070–1079.

    CAS  Article  Google Scholar 

  25. 25.

    D.C. Kong, C.F. Dong and K. Xiao, Effect of Temperature on Copper Corrosion in High-Level Nuclear Waste Environment, Trans. Nonferr. Met. Soc. China, 2017, 27(6), p 1431–1438.

    CAS  Article  Google Scholar 

  26. 26.

    D.C. Kong, C.F. Dong and A.N. Xu, Effect of Sulfide Concentration on Copper Corrosion in Anoxic Chloride-Containing Solutions, J. Mater. Eng. Perform., 2017, 26(4), p 1741–1750.

    CAS  Article  Google Scholar 

  27. 27.

    Y. Han, J. Mei and Q. Peng, Effect of Electropolishing on Corrosion of Nuclear Grade 316L Stainless Steel in Deaerated High Temperature Water, Corros. Sci., 2016, 112, p 625–634.

    CAS  Article  Google Scholar 

  28. 28.

    Z.Y. Cui, L.W. Wang and H.T. Ni, Influence of Temperature on the Electrochemical and Passivation Behavior of 2507 Super Duplex Stainless Steel in Simulated Desulfurized Flue Gas Condensates, Corros. Sci., 2017, 118, p 31–48.

    CAS  Article  Google Scholar 

  29. 29.

    D. Kong, C. Dong, X. Ni, L. Zhang, H. Luo, R. Li, L. Wang, C. Man and X. Li, The Passivity of Selective Laser Melted 316L Stainless Steel, Appl. Surf. Sci., 2020, 504, p 495–504.

    Article  CAS  Google Scholar 

  30. 30.

    S.L. Assis, S. Wolynec and I. Costa, Corrosion Characterization of Titanium Alloys by Electrochemical Techniques, Electrochim. Acta, 2006, 51, p 1815–1819.

    Article  CAS  Google Scholar 

  31. 31.

    Z.B. Wang, H.X. Hu and C.B. Liu, The Effect of Fluoride Ions on the Corrosion Behavior of Pure Titanium in 0.05 M Sulfuric Acid, Electrochim. Acta, 2014, 135, p 526–535.

    CAS  Article  Google Scholar 

  32. 32.

    F. Mohammadi, T. Nickchi and M.M. Attar, EIS Study of Potentiostatically Formed Passive Film on 304 Stainless Steel, Electrochim. Acta, 2011, 56, p 8727–8733.

    CAS  Article  Google Scholar 

  33. 33.

    D.C. Kong, X.Q. Ni, C.F. Dong, X. Lei, L. Zhang, C. Man, J. Yao, X. Cheng and X. Li, Bio-functional and Anti-corrosive 3D Printing 316L Stainless Steel Fabricated by Selective Laser Melting, Mater. Des., 2018, 152(5), p 88–101.

    CAS  Article  Google Scholar 

  34. 34.

    D.C. Kong, C.F. Dong and X.Q. Ni, Mechanical Properties and Corrosion Behavior of Selective Laser Melted 316L Stainless Steel After Different Heat Treatment Processes, J. Mater. Sci. Technol., 2019, 35(7), p 1499–1507.

    Article  Google Scholar 

  35. 35.

    Z.C. Feng, X.Q. Cheng and C.F. Dong, Passivity of 316L Stainless Steel in Borate Buffer Solution Studied by Mott–Schottky Analysis, Atomic Absorption Spectrometry and x-ray Photoelectron Spectroscopy, Corros. Sci., 2010, 52, p 3646–3653.

    CAS  Article  Google Scholar 

  36. 36.

    D.C. Kong, C.F. Dong and X.Q. Ni, Superior Resistance to Hydrogen Damage for Selective Laser Melted 316L Stainless Steel in a Proton Exchange Membrane Fuel Cell Environment, Corros. Sci., 2020, 166, p 108425.

    CAS  Article  Google Scholar 

  37. 37.

    D.C. Kong, C.F. Dong and A.N. Xu, The Stability of Passive Film Growth on Copper in Anaerobic Sulphide Solutions, Corros. Eng. Sci. Technol., 2017, 52(3), p 188–194.

    CAS  Article  Google Scholar 

  38. 38.

    D.D. Macdonald, The History of the Point Defect Model for the Passive State: A Brief Review of Film Growth Aspects, Electrochim. Acta, 2011, 56, p 1761–1772.

    CAS  Article  Google Scholar 

  39. 39.

    F.D. Quarto, F.D. Franco, S. Miraghaei, M. Santamaria and F.L. Mantia, The Amorphous Semiconductor Schottky Barrier Approach to Study the Electronic Properties of Anodic Films on Ti, J. Electrochem. Soc., 2017, 164, p C516–C525.

    Article  CAS  Google Scholar 

  40. 40.

    F.L. Mantia, H. Habazaki, M. Santamaria and F.D. Quarto, A Critical Assessment of the Mott–Schottky Analysis for the Characterisation of Passive Film-Electrolyte Junctions, Russ J. Electrochem., 2010, 46, p 1306–1322.

    CAS  Article  Google Scholar 

  41. 41.

    F.X. Mao, C.F. Dong and S. Sharifi-Asl, Passivity Breakdown on Copper: Influence of Chloride Ion, Electrochim. Acta, 2014, 144, p 391–399.

    CAS  Article  Google Scholar 

  42. 42.

    H.M. Huang, S.J. Luo and K.L. Yao, First-Principles Study of the Stability and the Electronic Structure of NiO/MgO Interface, Comp. Mater. Sci., 2010, 50, p 198–202.

    CAS  Article  Google Scholar 

  43. 43.

    Z. Rak, E.W. Bucholz and D.W. Brenner, Defect Formation in Aqueous Environment: Theoretical Assessment of Boron Incorporation in Nickel Ferrite under Conditions of an Operating Pressurized-Water Nuclear Reactor (PWR), J. Nucl. Mater., 2015, 461, p 350–356.

    CAS  Article  Google Scholar 

  44. 44.

    T.T. Shi, J.N. Wang and Y.P. Wang, Atomic Diffusion Mediated by Vacancy Defects in Pure and Transition Element (TM)-Doped (TM = Ti, Y, Zr or Hf) L12Al3Sc, Mater. Des., 2016, 108, p 529–537.

    CAS  Article  Google Scholar 

  45. 45.

    E. Wimmer, W. Wolf and J. Sticht, Temperature-Dependent Diffusion Coefficients from Ab Initio, Computations: Hydrogen, Deuterium, and Tritium in Nickel, Phys. Rev. B, 2008, 77, p 761–768.

    Article  CAS  Google Scholar 

  46. 46.

    C.Z. Hargather, S.L. Shang and Z.K. Liu, A First-Principles Study of Self-diffusion Coefficients of fcc Ni, Comp. Mater. Sci., 2014, 86, p 17–23.

    CAS  Article  Google Scholar 

  47. 47.

    H. Jang, S. Ahn and H. Kwon, Determination of the Diffusivity of Cation Vacancy in the Passive Film on Ni, ECS Trans., 2007, 3, p 319–331.

    CAS  Article  Google Scholar 

  48. 48.

    V. Maurice and P. Marcus, Passive Films at the Nanoscale, Electrochim. Acta, 2012, 84, p 129–138.

    CAS  Article  Google Scholar 

  49. 49.

    I. Nicic and D.D. Macdonald, The Passivity of Type 316L Stainless Steel in Borate Buffer Solution, J. Nucl. Mater., 2008, 379, p 54–58.

    CAS  Article  Google Scholar 

  50. 50.

    D.C. Kong, C.F. Dong and X. Wei, Size Matching Effect Between Anion Vacancies and Halide Ions in Passive Film Breakdown on Copper, Electrochim. Acta, 2018, 292, p 817–827.

    CAS  Article  Google Scholar 

  51. 51.

    E. Sikora and D.D. Macdonald, Defining the Passive State, Solid State Ionics, 1997, 94, p 141–150.

    CAS  Article  Google Scholar 

Download references


This work was financially supported by the National Key Research and Development Program of China (No. 2017YFB 0702300), National Natural Science Foundation of China (No. 51871028), MOST innovation method project (2019IM050400).

Author information



Corresponding author

Correspondence to Chaofang Dong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ni, X., Dong, C., Zhang, L. et al. The Passivity of Pure Nickel in Alkaline Solution under Different Temperatures: Electrochemical Verification and First-Principles Calculation. J. of Materi Eng and Perform (2021).

Download citation


  • Auger electron spectroscopy
  • diffusion coefficient
  • first-principles calculation
  • nickel
  • passive film