Study of Corrosion Behavior in Resistance Spot Welds of Thin Sheets of Zinc-Coated Interstitial-Free Steel

Abstract

The aim of this research is to investigate the corrosion behavior of the resistance spot-welded joints of the zinc-coated interstitial free steel (IF steel) in contrast to the steel. For this purpose, the corrosion behavior of the welds and base interstitial-free steel (IF steel) was investigated in two solutions including 0.1 M NaCl + 0.1 M NaOH and 0.1 M NaCl + 0.1 M H2SO4. Potentiodynamic polarization curves and electrochemical impedance spectroscopy test results showed that the corrosion resistance of the base metal and welds in 0.1 M NaCl + 0.1 M NaOH solution is higher than their corrosion resistance in 0.1 M NaCl + 0.1 M H2SO4 solution. It was found that the corrosion resistance of the IF steel base metal in both solutions is higher than that of the welds obtained by the steel. According to the cyclic polarization curves, it can be said that the passive film formed on the specimens in 0.1 M NaCl + 0.1 M NaOH solution is highly susceptible to pitting corrosion while the specimens do not show any passivation behavior in 0.1 M NaCl + 0.1 M H2SO4 solution and undergo severe uniform corrosion.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    S. Hoile, Processing and Properties of Mild Interstitial Free Steels, Mater. Sci. Technol., 2000, 16(10), p 1079–1093.

    CAS  Article  Google Scholar 

  2. 2.

    S. Claessens, D. Vanderschueren, I. Bultinck, L. Burgelman, and J. Dilewijns, (September 1996) Ferritic rolling of ULC-IF-steels, The international symposium on the hot workability of steels and light alloys-composites, 35th Annual Meeting of Metallurgists, September 1996, Montreal, Canada, p 341–348

  3. 3.

    K. Dehghani and J. Jonas, Dynamic Bake Hardening of Interstitial-Free Steels, Metall. Mater. Trans. A, 2000, 31(5), p 1375–1384.

    Article  Google Scholar 

  4. 4.

    N. Williams and J. Parker, Review of Resistance Spot Welding of Steel Sheets Part 1 Modelling and Control of Weld Nugget Formation, Int. Mater. Rev., 2004, 49(2), p 45–75.

    CAS  Article  Google Scholar 

  5. 5.

    T. Das, R. Das, and J. Paul, Resistance Spot Welding of Dissimilar AISI-1008 Steel/Al-1100 Alloy Lap Joints with a Graphene Interlayer, J. Manuf. Process., 2020, 53, p 260–274.

    Article  Google Scholar 

  6. 6.

    D. Katundi, A. Tosun Bayraktar, E. Bayraktar, and D. Toueix, Corrosion Behaviour of the Welded Steel Sheets used in Automotive Industry, J. Achiev. Mater. Manuf. Eng., 2010, 38(2), p 146–153.

    Google Scholar 

  7. 7.

    S. Fujita and D. Mizuno, Corrosion and Corrosion Test Methods of Zinc Coated Steel Sheets on Automobiles, Corros. Sci., 2007, 49(1), p 211–219.

    CAS  Article  Google Scholar 

  8. 8.

    G.P. Singh, A.P. Moon, S. Sengupta, G. Deo, S. Sangal, and K. Mondal, Corrosion Behavior of IF Steel in Various Media and Its Comparison with Mild Steel, J. Mater. Eng. Perform., 2015, 24(5), p 1961–1974.

    CAS  Article  Google Scholar 

  9. 9.

    T. Hemmingsen, H. Hovdan, and P. Sanni, The Influence of Electrolyte Reduction Potential on Weld Corrosion, Electrochim. Acta, 2002, 47(24), p 3949–3955.

    CAS  Article  Google Scholar 

  10. 10.

    G. Banerjee, T.K. Pal, N. Bandyopadhyay, and D. Bhattacharjee, Effect of Welding Conditions on Corrosion Behaviour of Spot Welded Coated Steel Sheets, Corros. Eng. Sci. Technol., 2011, 46(1), p 64–69.

    CAS  Article  Google Scholar 

  11. 11.

    K. Dehghani, M. Hosseini, and A. Nekahi, Comparing the Corrosion Behavior of Nanograined and Coarse-Grained Interstitial Free Steels, Int. J. Mater. Res., 2013, 104(10), p 999–1006.

    CAS  Article  Google Scholar 

  12. 12.

    L.Q. Guo, D. Liang, Y. Bai, X.L. Miao, L.J. Qiao, and A. Volinsky, Effects of Hydrogen and Chloride Ions on Automobile Interstitial-Free Steel Corrosion, Corrosion, 2014, 70(10), p 1024–1030.

    Article  Google Scholar 

  13. 13.

    S.B. Salimi, M. Atapour, M.R. Salmani, and R. Ashiri, Resistance Spot Welding Metallurgy of Thin Sheets of Zinc-Coated Interstitial-Free Steel, Metall. Mater. Trans. A, 2019, 50A(5), p 2218–2234.

    Article  Google Scholar 

  14. 14.

    M.B. Kannan, R.K.S. Raman, and S. Khoddam, Comparative Studies on the Corrosion Properties of a Fe–Mn–Al–Si Steel and an Interstitial-Free Steel, Corros. Sci., 2008, 50, p 2879–2884.

    CAS  Article  Google Scholar 

  15. 15.

    R. Ashiri, M. Haque, C. Ji, M. Shamanian, H. Salimijazi, and Y. Park, Supercritical Area and Critical Nugget Diameter for Liquid Metal Embrittlement of Zn-Coated Twining Induced Plasticity Steels, Scr. Mater., 2015, 109, p 6–10.

    CAS  Article  Google Scholar 

  16. 16.

    Z. Dazheng, G. Xiuhua, S. Guanqiao, L. Zhenguang, Y. Ningning, D. Linxiu, and R.D.K. Misra, Effect of Tempered Martensite and Ferrite/Bainite on Corrosion Behavior of Low Alloy Steel Used for Flexible Pipe Exposed to High-Temperature Brine Environment, J. Mater. Eng. Perform., 2018, 27, p 4911–4920.

    Article  Google Scholar 

  17. 17.

    K.D. Ralston and N. Birbilis, Effect of Grain Size on Corrosion: A Review, Corrosion, 2010, 66(7), p 075005–075013.

    Article  Google Scholar 

  18. 18.

    W. Zeiger, M. Schneider, D. Scharnweber, and H. Worch, Corrosion Behaviour of a Nanocrystalline FeA18 Alloy, Nanostruct. Mater., 1995, 6(5–8), p 1013–1016.

    Article  Google Scholar 

  19. 19.

    R. Ashiri, M. Shamanian, H. Salimijazi, M. Haque, J. Bae, C. Ji, K. Chin, and Y. Park, Liquid Metal Embrittlement-Free Welds of Zn-Coated Twinning Induced Plasticity Steels, Scr. Mater., 2016, 114, p 41–47.

    CAS  Article  Google Scholar 

  20. 20.

    R. Ashiri, H. Mostaan, and Y. Park, A Phenomenological Study of Weld Discontinuities and Defects in Resistance Spot Welding of Advanced High Strength TRIP Steel, Metall. Mater. Trans. A, 2018, 49, p 6161–6172.

    CAS  Article  Google Scholar 

  21. 21.

    Ó. Martín, P. De Tiedra, and M. López, Artificial Neural Networks for Pitting Potential Prediction of Resistance Spot Welding Joints of AISI 304 Austenitic Stainless Steel, Corros. Sci., 2010, 52(7), p 2397–2402.

    Article  Google Scholar 

  22. 22.

    W. Wang, R. Xu, Y. Hao, Q. Wang, L. Yu, Q. Che, J. Cai, K. Wang, and Z. Ma, Corrosion Fatigue Behavior of Friction Stir Processed Interstitial Free Steel, J. Mater. Sci. Technol., 2018, 34, p 148–156.

    Article  Google Scholar 

  23. 23.

    Y.A. Albrimi, A. Eddib, J. Douch, Y. Berghoute, and M. Hamdani, Electrochemical Behaviour of AISI 316 Austenitic Stainless Steel in Acidic Media Containing Chloride Ions, Int. J. Electrochem. Sci., 2011, 6(10), p 4614–4627.

    Google Scholar 

  24. 24.

    Y.B. Hu, C.F. Dong, M. Sun, K. Xiao, P. Zhong, and X.G. Li, Effects of Solution pH and Cl- on Electrochemical Behaviour of an Aermet100 Ultra-High Strength Steel in Acidic Environments, Corros. Sci., 2011, 53(12), p 4159–4163.

    CAS  Article  Google Scholar 

  25. 25.

    M. Mouanga, M. Puiggali, B. Tribollet, V. Vivier, N. Pébère, and O. Devos, Galvanic Corrosion Between Zinc and Carbon Steel Investigated by Local Electrochemical Impedance Spectroscopy, Electrochim. Acta, 2013, 88, p 6–14.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Masoud Atapour or Rouholah Ashiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pishva, P., Beni, S.S., Atapour, M. et al. Study of Corrosion Behavior in Resistance Spot Welds of Thin Sheets of Zinc-Coated Interstitial-Free Steel. J. of Materi Eng and Perform (2021). https://doi.org/10.1007/s11665-021-05474-0

Download citation

Keywords

  • corrosion behavior
  • interstitial-free steel
  • passivation
  • pitting corrosion
  • resistance spot welds
  • uniform corrosion