Investigations into Enhanced Formability of AA5083 Aluminum Alloy Sheet in Single-Point Incremental Forming

Abstract

In this article, formability of aluminum alloy AA5083-sheet in single point incremental forming (SPIF) is investigated through forming limit curves (FLCs) and maximum formable wall angle considering different forming parameters and conditions. Theoretical FLCs were predicted for SPIF and conventional forming utilizing deformation instability and Marciniak-Kuczynski methods, respectively, and validated by experiments. SPIF was found to give better formability compared to the conventional one in terms of the limit strain values from varying plane strain to equi-biaxial stretching modes of deformations. Groove depth at the onset of fracture in incremental sheet forming test was observed to be more for higher forming speed, i.e., at higher tool rotational speed and feed and for lower incremental depth. The maximum formable wall angle was improved for lower step depth but not significantly increased for higher forming speed. The forming limit strains and maximum forming wall angle were found to increase for incremental forming at elevated temperature. Microstructure studies revealed grain refinement in the deformed sheet in SPIF forming, and microhardness values in the deformed sheets were observed to increase for incrementally formed parts compared to that of the as-received sheet.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Abbreviations

\(\sigma_{\phi }^{X}\) :

Meridional stress in zone X (MPa)

\(\sigma_{\theta }^{X}\) :

Circumferential stress in zone X (MPa)

\(\sigma_{t}^{X}\) :

Thickness stress in zone X (MPa)

\(\varepsilon_{\phi }^{X}\) :

Meridional strain in zone X

\(\varepsilon_{\theta }^{X}\) :

Circumferential strain in zone X

\(\varepsilon_{t}^{X}\) :

Thickness strain in zone X

\(F_{\phi }^{X}\) :

Meridional force in zone X (N)

\(F_{\theta }^{X}\) :

Circumferential force in zone X (N)

\(F_{t}^{X}\) :

Thickness force in zone X (N)

\(\alpha\) :

Meridional angle (radian)

\(\beta\) :

Forming/wall angle (radian)

\(\theta_{0}\) :

Circumferential contact angle (radian)

\(r_{\text{t}}\) :

Tool radius (mm)

\(r\) :

Distance to tool center (mm)

\(t_{0}\) :

Initial sheet thickness (mm)

\(t\) :

Instantaneous sheet thickness (mm)

\(A_{\text{t}}\) :

Transition area between CZ & NZ (mm2)

\(\bar{\sigma }\) :

Equivalent stress (MPa)

\(\bar{\varepsilon }\) :

Equivalent strain

\(N\) :

Tool rotational speed (rpm)

\(f_{t}\) :

Feed rate of tool (mm/min)

\(\Delta z\) :

Incremental step depth (mm)

\(k\) :

Strength coefficient

\(n\) :

Strain hardening exponent

\(\varepsilon_{0}\) :

Prestrain

\(a\) :

Material parameter in Hosford 79’s yield criterion

\(R\) :

Anisotropy coefficient

\(r_{0}\) :

Anisotropy coefficient at 0º to RD

\(r_{45}\) :

Anisotropy coefficient at 45º to RD

\(r_{90}\) :

Anisotropy coefficient at 90º to RD

\(\theta_{0}^{\prime }\) :

Initial groove angle

\(f_{0}\) :

Initial imperfection factor

\(f\) :

Imperfection factor

\(t_{0}^{Y}\) :

Initial sheet thickness in zone Y (mm)

\(\sigma_{nn}^{X}\) :

Stress component in n direction for groove coordinate of zone X

\(\sigma_{nt}^{X}\) :

Stress component in t direction for groove coordinate of zone X

\(\sigma_{nn}^{Y}\) :

Stress component in t direction for groove coordinate of zone Y

\(\sigma_{nt}^{Y}\) :

Stress component in t direction for groove coordinate of zone Y

\(\sigma_{1}^{Y}\) :

Stress in rolling direction in zone Y (MPa)

\(\sigma_{2}^{Y}\) :

Stress in transverse direction in zone Y (MPa)

\(F_{nn}^{X}\) :

Normal force per unit width in zone X (N/mm)

\(F_{nt}^{X}\) :

Shear force per unit width in zone X (N/mm)

\(F_{nn}^{Y}\) :

Normal force per unit width in zone Y (N/mm)

\(F_{nt}^{Y}\) :

Shear force per unit width in zone Y (N/mm)

\(\varepsilon_{1}\) :

Major strain

\(\varepsilon_{2}\) :

Minor strain

\(\sigma_{1}^{Y}\) :

Stress in rolling direction in zone Y (MPa)

\(d\varepsilon_{nn}^{X}\) :

Strain increment in n direction for groove coordinate of zone X

\(d\varepsilon_{nn}^{Y}\) :

Strain increment in n direction for groove coordinate of zone Y

\(d\varepsilon_{tt}^{X}\) :

Strain increment in t direction for groove coordinate of zone Y

\(d\varepsilon_{tt}^{Y}\) :

Strain increment in t direction for groove coordinate of zone Y

\(d\varepsilon_{nt}^{X}\) :

Shear strain increment for groove coordinate of zone X

\(d\varepsilon_{nt}^{Y}\) :

Shear strain increment for groove coordinate of zone Y

\(d\bar{\varepsilon }^{Y}\) :

Equivalent strain increment in zone Y

\(\varepsilon_{3}^{X}\) :

Thickness strain in zone Y

\(\varepsilon_{3}^{Y}\) :

Thickness strain in zone Y

\(z_{\text{d}}\) :

Deformation depth (mm)

\(z_{\text{f}}\) :

Fracture depth (mm)

\(t_{\text{f}}\) :

Final deformed sheet thickness (mm)

References

  1. 1.

    A.K. Behera, R.A. de Sousa, G. Ingarao, and V. Oleksik, Single Point Incremental Forming: An Assessment of the Progress and Technology Trends from 2005 to 2015, J. Manuf. Process., 2017, 27, p 37–62

    Article  Google Scholar 

  2. 2.

    T. McAnulty, J. Jeswiet, and M. Doolan, Formability in Single Point Incremental Forming: A Comparative Analysis of the State of the Art, CIRP J. Manuf. Sci. Technol., 2017, 16, p 43–54

    Article  Google Scholar 

  3. 3.

    M. Janbakhsh, F. Djavanroodi, and M.A. Riahi, Comparative Study on Determination of Forming Limit Diagrams for Industrial Aluminium Sheet Alloys Considering Combined Effect of Strain Path, Anisotropy and Yield Locus, J. Strain Anal. Eng. Des., 2012, 47(6), p 350–361

    Article  Google Scholar 

  4. 4.

    C. Zhang, L. Leotoing, D. Guines, and E. Ragneau, Theoretical and Numerical Study of Strain Rate Influence on AA5083 Formability, J. Mater. Process. Technol., 2009, 209(8), p 3849–3858

    CAS  Article  Google Scholar 

  5. 5.

    F. Zhalehfar, S.J. Hosseinipour, S. Nourouzi, and A.H. Gorji, A Different Approach for Considering the Effect of Non-Proportional Loading Path on the Forming Limit Diagram of AA5083, Mater. Des., 2013, 50, p 165–173

    CAS  Article  Google Scholar 

  6. 6.

    A. Van Bael, P. Eyckens, S. He, C. Bouffioux, C. Henrard, A.M. Habraken, J. Duflou, and P. Van Houtte, Forming Limit Predictions for Single-Point Incremental Sheet Metal Forming, AIP Conf. Proc., 2007, 907, p 309–314

    Article  Google Scholar 

  7. 7.

    M. Ham and J. Jeswiet, Forming Limit Curves in Single Point Incremental Forming, CIRP Ann. Manuf. Technol., 2007, 56(1), p 277–280

    Article  Google Scholar 

  8. 8.

    G. Hussain, L. Gao, N. Hayat, and X. Ziran, A New Formability Indicator in Single Point Incremental Forming, J. Mater. Process. Technol., 2009, 209(9), p 4237–4242

    CAS  Article  Google Scholar 

  9. 9.

    P.A.F. Martins, N. Bay, M. Skjoedt, and M.B. Silva, Theory of Single Point Incremental Forming, CIRP Ann. Manuf. Technol., 2008, 57(1), p 247–252

    Article  Google Scholar 

  10. 10.

    R. Malhotra, L. Xue, T. Belytschko, and J. Cao, Mechanics of Fracture in Single Point Incremental Forming, J. Mater. Process. Technol., 2012, 212(7), p 1573–1590

    Article  Google Scholar 

  11. 11.

    Y. Fang, B. Lu, J. Chen, D.K. Xu, and H. Ou, Analytical and Experimental Investigations on Deformation Mechanism and Fracture Behavior in Single Point Incremental Forming, J. Mater. Process. Technol., 2014, 214, p 1503–1515

    Article  Google Scholar 

  12. 12.

    S. Ai, B. Lu, J. Chen, H. Long, and H. Ou, Evaluation of Deformation Stability and Fracture Mechanism in Incremental Sheet Forming, Int. J. Mech. Sci., 2017, 124–125, p 174–184

    Article  Google Scholar 

  13. 13.

    M. Durante, A. Formisano, and A. Langella, Observations on the Influence of Tool-sheet Contact Conditions on an Incremental Forming Process, J. Mater. Eng. Perform., 2011, 20, p 941–946

    CAS  Article  Google Scholar 

  14. 14.

    V.C. Do, Q.T. Pham, and Y.S. Kim, Identification of Forming Limit Curve at Fracture in Incremental Sheet Forming, Int. J. Adv. Manuf. Technol., 2017, 92(9–12), p 4445–4455

    Article  Google Scholar 

  15. 15.

    A. Mulay, S. Ben, S. Ismail, and A. Kocanda, Experimental Investigations into the Effects of SPIF Forming Conditions on Surface Roughness and Formability by Design of Experiments, J. Brazilian Soc. Mech. Sci. Eng., 2017, 39(10), p 3997–4010

    Article  Google Scholar 

  16. 16.

    V.K. Barnwal, S. Chakrabarty, A. Tewari, K. Narasimhan, and S.K. Mishra, Influence of Single-Point Incremental Force Process Parameters on Forming Characteristics and Microstructure Evolution of AA-6061 Alloy Sheet, J. Mater. Eng. Perform., 2019, 28, p 7141–7154

    CAS  Article  Google Scholar 

  17. 17.

    A. Kumar, V. Gulati, P. Kumar, V. Singh, B. Kumar, and H. Singh, Parametric Effects on Formability of AA2024-O Aluminum Alloy Sheets in Single Point Incremental Forming, J. Mater. Res. Technol., 2019, 8(1), p 1461–1469

    CAS  Article  Google Scholar 

  18. 18.

    K. Maji and G. Kumar, Inverse Analysis and Multi-Objective Optimization of Single-Point Incremental Forming of AA5083 Aluminum Alloy Sheet, Soft. Comput., 2020, 24(6), p 4505–4521

    Article  Google Scholar 

  19. 19.

    K. Maji, D.K. Pratihar, and S. Patra, Modelling of Electrical Discharge Machining Process Using Regression Analysis, Adaptive Neuro-Fuzzy Inference System and Genetic Algorithm, Int. J. Data Min. model. Manag., 2010, 2(10), p 75–94

    Google Scholar 

  20. 20.

    A. Kumar and K. Maji, Selection of Process Parameters for Near-Net Shape Deposition in Wire Arc Additive Manufacturing by Genetic Algorithm, J. Mater. Eng. Perform., 2020, 29, p 3334–3352

    CAS  Article  Google Scholar 

  21. 21.

    K. Hamilton and J. Jeswiet, Single Point Incremental Forming at High Feed Rates and Rotational Speeds: Surface and Structural Consequences, CIRP Ann. Manuf. Technol., 2010, 59(1), p 311–314

    Article  Google Scholar 

  22. 22.

    P. Gupta and J. Jeswiet, Effect of Temperatures During Single Point Incremental Forming, Int. J. Adv. Manuf. Technol., 2018, 95, p 3693–3706

    Article  Google Scholar 

  23. 23.

    H. Khalatbari, A. Iqbal, X. Shi, L. Gao, G. Hussain, and M. Hashemipour, High-Speed Incremental Forming Process: A Trade-Off Between Formability and Time Efficiency, Mater. Manuf. Process., 2015, 30(11), p 1354–1363

    CAS  Article  Google Scholar 

  24. 24.

    A. Mulay, B.S. Ben, S. Ismail, A. Kocanda, and C. Jasiński, Performance Evaluation of High-Speed Incremental Sheet Forming Technology for AA5754 H22 Aluminum and DC04 Steel Sheets, Arch. Civil Mech. Eng., 2018, 18(4), p 1275–1287

    Article  Google Scholar 

  25. 25.

    P. Shrivastava and P. Tandon, Microstructure and Texture Based Analysis of Forming Behavior and Deformation Mechanism of AA1050 Sheet During Single Point Incremental Forming, J. Mater. Process. Technol., 2019, 266, p 292–310

    CAS  Article  Google Scholar 

  26. 26.

    M.A. Kulas, P.E. Krajewski, J.R. Bradley, and E.M. Taleff, Forming-Limit Diagrams for Hot-Forming of AA5083 Aluminum Sheet: Continuously Cast Material, J. Mater. Eng. Perform., 2007, 16, p 308–313

    CAS  Article  Google Scholar 

  27. 27.

    P.F. Bariani, S. Bruschi, A. Ghiotti, and F. Michieletto, Hot Stamping of AA5083 Aluminium Alloy Sheets, CIRP-Ann. Manuf. Technol., 2013, 62, p 251–254

    Article  Google Scholar 

  28. 28.

    J.D. Bressan, S. Bruschi, and A. Ghiotti, Prediction of Limit Strains in Hot Forming of Aluminium Alloy Sheets, Int. J. Mech. Sci., 2016, 115–116, p 702–710

    Article  Google Scholar 

  29. 29.

    Z. Liu, Heat-Assisted Incremental Sheet Forming: A State-of-the-Art Review, Int. J. Adv. Manuf. Technol., 2018, 98(9–12), p 2987–3003

    Article  Google Scholar 

  30. 30.

    P. Shrivastava, P. Kumar, P. Tandon, and A. Pesin, Improvement in Formability and Geometrical Accuracy of Incrementally Formed AA1050 Sheets by Microstructure and Texture Reformation Through Preheating, and their FEA and Experimental Validation, J. Braz. Soc. Mech. Sci. Eng., 2018, 40(7), p 1–15

    CAS  Article  Google Scholar 

  31. 31.

    P. Shrivastava and P. Tandon, Effect of Preheated Microstructure Vis-A`-vis Process Parameters and Characterization of Orange Peel in Incremental Forming of AA1050 Sheets, J. Mater. Eng. Perform., 2019, 28, p 2530–2542

    CAS  Article  Google Scholar 

  32. 32.

    Z. Marciniak and K. Kuczynski, Limit strains in the processes of stretch-forming sheet metal, Int. J. Mech. Sci., 1967, 9, p 609–620

    Article  Google Scholar 

  33. 33.

    M. Ganjiani and A. Assempour, Implementation of a Robust Algorithm for Prediction of Forming Limit Diagrams, J. Mater. Eng. Perform., 2008, 17, p 1–6

    CAS  Article  Google Scholar 

  34. 34.

    D. Banabic, Sheet Metal Forming Processes: Constitutive Modelling and Numerical Simulation, Springer, Berlin, 2010

    Google Scholar 

  35. 35.

    Z. Kai-feng and Y. Hong-hua, Deformation Behavior of Fine-grained 5083 Al alloy at Elevated Temperature, Trans. Nonferrous Met. Soc. China, 2009, 19, p 307–311

    Article  Google Scholar 

  36. 36.

    J.M. Allwood, D.R. Shouler, and A.E. Tekkaya, The Increased Forming Limits of Incremental Sheet Forming Processes, Key Eng. Mater., 2007, 344, p 621–628

    Article  Google Scholar 

  37. 37.

    J.M. Allwood and D.R. Shouler, Generalised Forming Limit Diagrams Showing Increased Forming Limits with Non-planar Stress States, Int. J. Plast., 2009, 25, p 1207–1230

    CAS  Article  Google Scholar 

  38. 38.

    M.K.M. Nor, and I.M. Suhaimi, Effects of Temperature and Strain Rate on Commercial Aluminum Alloy AA5083, Appl Mech Mater., 2014, ISSN: 1662-7482, 660, p 332-336.

  39. 39.

    H. Ait-Amokhtar, C. Fressengeas, and K. Bouabdallah, On the Effects of the Mg Content on the Critical Strain for the Jerky Flow of Al-Mg Alloys, Mater. Sci. Eng. A, 2015, 631, p 209–213

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful and gratefully acknowledge the financial support of DST-SERB, India from the Project ECR/2016/001134.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kuntal Maji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, G., Maji, K. Investigations into Enhanced Formability of AA5083 Aluminum Alloy Sheet in Single-Point Incremental Forming. J. of Materi Eng and Perform 30, 1289–1305 (2021). https://doi.org/10.1007/s11665-021-05455-3

Download citation

Keywords

  • aluminum alloy
  • deformation instability
  • forming limit curve
  • heat-assisted incremental forming
  • high speed
  • incremental forming