Effect of Temperature on the Performance of an Ion-Sensitive Field-Effect Transistor-Type Chemical Sensor with Aluminum Nitride Membrane

Abstract

ISFET chemical sensors offer innovative solutions for the detection of chemical species by optimizing the ionosensitive membrane or layer between the aqueous medium and the insulation. As a result, the information provided by the sensor is no longer reliable. This is a major problem, as operators are often required to take measurements in an environment with higher or lower temperatures. The study of the effect of temperature on the detection parameters of the sensor, which are the surface potential, linearity and sensitivity, seems essential. The mathematical model presented in this article describes the physicochemical and thermal behavior of the sensor. First, it allows a series of simulations to be carried out on the variation in sensitivity, potential, and linearity with respect to the variation in pH. The second part of this work concerns the influence of temperature on the behavior of the sensor. Hence the determination of the temperature coefficient of the sensitivity, which is an indication of the performance of the sensor. It is also noted that the nature of the membranes of the sensors (Si3N4, Al2O3, SnO2) influences the temperature coefficient.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Bibliography

  1. 1.

    J.C. Ortiz Pereira, A.G. Avila, and J.C. Briceño, Lipid Vesicle Detection using ISFET devices, J. Briceño, 2013, 69, p 89–95

    Google Scholar 

  2. 2.

    J.L. Chiang, S.S. Jan, Y.C. Chen, and J.C. Chou, Sensing Characteristics of ISFET Based on AlN Thin Film. In Optoelectronic Materials and Devices II, Int. Soc. Opt. Photon., 2000, 4078, p 689–696

    CAS  Google Scholar 

  3. 3.

    Y.C. Syu, W.E. Hsu, and C.T. Lin, Field-Effect Transistor Biosensing: devices and Clinical Applications, ECS. J. Soli. Stat. Sci. Technol., 2018, 7(7), p Q3196

    CAS  Article  Google Scholar 

  4. 4.

    C. Toumazou, T.S.L.K. Thay, and P. Georgiou, A New Era of Semiconductor Genetics using Ion-Sensitive Field-Effect Transistors: The Gene-Sensitive Integrated Cell, Math. Physci. Eng. Sci., 2012, 2014(372), p 20130112

    Google Scholar 

  5. 5.

    A.V. Surmalyan, Surface Potential Behavior in ISFET Based Bio-(Chemical) Sensor, Arme. J. Physci., 2012, 5(4), p 194–202

    CAS  Google Scholar 

  6. 6.

    T. Brazzini, A. Bengoechea Encabo, and M.A. Sánchez Garcia, Investigation of AlInN Barrier ISFET Structures with GaN Capping for pH Detection. Sensors and Actuators B: Chemical, Sens. Actua B: Chem., 2013, 76, p 704–707

    Article  Google Scholar 

  7. 7.

    V. Pachauri and S. Ingebrandt, Biologically Sensitive Field-Effect Transistors: from ISFETs to NanoFETs. Essays in Biochemistry, Essays Biochem., 2016, 60(1), p 81–90

    Article  Google Scholar 

  8. 8.

    R. Novitski, H. Einati, and Y. Shacham Diamand, Temperature Dependence of Buried Channel Ion Sensitive Field Effect Transistors, J. Appl. Physci., 2009, 106(9), p 094501

    Article  Google Scholar 

  9. 9.

    J.L. Chiang, Y.C. Chen, and J.C. Chou, Simulation and Experimental Study of the pH-Sensing Property for AlN Thin Films, Jpn. J. Appl. Physci., 2001, 40(10R), p 5900

    CAS  Article  Google Scholar 

  10. 10.

    M.I. Khan, K. Mukherjee, R. Shoukat, and H. Dong, A Review on pH Sensitive Materials for Sensors and Detection Methods, Micro. Syst. Technol., 2017, 23(10), p 4391–4404

    CAS  Article  Google Scholar 

  11. 11.

    W. Bunjongpru, S. Porntheeraphat, O. Trithaveesak, N. Somwang, P. Khomdet, W. Jeamsaksiri, J. Nukeaw, The innovative AlN-ISFET based pH sensor, in 5th I. Conf. Electr. Comp. communi. Infor. Technol. IEEE. vol 2, pp. 833–836, 2008

  12. 12.

    C.S. Lee, S.K. Kim, and M. Kim, Ion-Sensitive Field-Effect Transistor for Biological Sensing, Sensors., 2009, 9(9), p 7111–7131

    CAS  Article  Google Scholar 

  13. 13.

    H.J. Park, S.K. Kim, and K. Park, An ISFET Biosensor for the Monitoring of Maltose-Induced Conformational Changes in MBP, FEBS Lett., 2009, 583(1), p 157–162

    CAS  Article  Google Scholar 

  14. 14.

    M. Tabata, T. Goda, A. Matsumoto, and Y. Miyahara, Field-effect transistors for detection of biomolecular recognition. In: Intelligent Nanosystems for Energy, Information and Biological Technologies, Intel. Nanosys. Energ. Inform. Biolog. Technol. Springer.,2016, pp. 13–25.

  15. 15.

    S.X. Chen, S.P. Chang, and S.J. Chang, Investigation of InN Nanorod-Based EGFET pH Sensors Fabricated on Quartz substrate, Dig. J. Nanomater Biostruct., 2014, 9, p 1505–1511

    Google Scholar 

  16. 16.

    C.O. Manlises, F.R. Cruz, C. Wen Yaw, and A. Paglinawan, Characterization of an ISFET with Built-in Calibration Registers Through Segmented Eight-Bit Binary Search in Three-Point Algorithm Using FPGA, J. Low. Power. Electron. Appl., 2017, 7(3), p 19

    Article  Google Scholar 

  17. 17.

    F. Lopez Huerta, R.M. Woo Garcia, M. Lara Castro, J.J. Estrada Lopez, and M. Herrera, An Integrated ISFET pH Microsensor on a CMOS Standard Process, J. Sens. Technol., 2013, 3(3), p 57

    Article  Google Scholar 

  18. 18.

    C. Hazarika and S. Sharma, Survey on Ion Sensitive Field Effect Transistor from the View Point of pH Sensitivity and Drift, J. Sci. Technol., 2017, 10(37), p 1–18

    CAS  Google Scholar 

  19. 19.

    T.M. Abdolkader, A.G. Alahdal, A. Shaker, and W. Fikry, ISFET pH-Sensor Sensitivity Extraction Using Conventional MOSFET Simulation Tools, Int. J. Chem. Eng. Appl., 2015, 6(5), p 346

    CAS  Google Scholar 

  20. 20.

    S.E. Naimi, B. Hajji, I. Humenyuk, J. Launay, and B.P. Temple, Temperature Influence on pH-ISFET Sensor Operating in Weak and Moderate Inversion Regime: Model And Circuitry, Sens. Actua B Chem., 2014, 202, p 1019–1027

    CAS  Article  Google Scholar 

  21. 21.

    J.C. Chou and P.L. Lan, Study on pH at the Point of Zero Charge of TiO2 pH Ion-Sensitive Field Effect Transistor Made by the Sputtering Method, Thin Solid Films, 2005, 476(1), p 157–161

    CAS  Article  Google Scholar 

  22. 22.

    G. Massobrio, M. Grattarola, G. Mattioli, and J.F. Mattioli, ISFET-Based Biosensor Modeling with SPICE, J. Sens. Actua B Chem, 1990, 1(1–6), p 401–407

    CAS  Article  Google Scholar 

  23. 23.

    L. Bousse et al., Zeta Potential Measurements of Ta2O5 and SiO2 Thin Films, J. Colloid Interface Sci., 1991, 147(1), p 22–32

    CAS  Article  Google Scholar 

  24. 24.

    J.L. Chiang et al., Temperature Effect on AlN/SiO2 Gate pH-Ion-Sensitive Field-Effect Transistor Devices, Jpn. J. Appl. Physci., 2002, 41(2R), p 541

    CAS  Article  Google Scholar 

  25. 25.

    K.B. Parizi et al., ISFET pH Sensitivity: Counter-Ions Play a Key Role, Sci. Rept, 2017, 7(1), p 1–10

    Article  Google Scholar 

  26. 26.

    A. Gaddour, W. Dghais, B. Hamdi, and M. Ben Ali, Temperature Compensation Circuit for ISFET Sensor, J. Low. Power. Electron. Appl., 2020, 10(1), p 2

    Article  Google Scholar 

  27. 27.

    Y.C. Chen, S.S. Jan, and J.C. Chou, Temperature Effects on the Characteristics of Hydrogen Ion-Sensitive Field-Effect Transistors with Sol–Gel-Derived Lead Titanate Gates, J. Anal. Chim. Acta., 2004, 516(1–2), p 43–48

    CAS  Article  Google Scholar 

  28. 28.

    S. Martinoia, G. Massobrio, and L. Lorenzelli, Modeling ISFET Microsensor and ISFET-Based Microsystems, J. Sens. Actua B Chem., 2005, 105(1), p 14–27

    CAS  Article  Google Scholar 

  29. 29.

    J.L. Chiang, J.C. Chou, and Y.C. Chen, Study of the pH-ISFET and EnFET for Biosensor Applications, J. Med. Biol. Eng., 2001, 21(3), p 135–146

    Google Scholar 

  30. 30.

    C.N. Tsai, J.C. Chou, T.P. Sun, and S.K. Hsiung, Study on the Sensing Characteristics and Hysteresis Effect of the Tin Oxide pH Electrode, Sens. Actua B Chem., 2005, 108(1–2), p 877–882

    CAS  Article  Google Scholar 

  31. 31.

    J.C. Chou and C.Y. Weng, Sensitivity and Hysteresis Behavior of the Commercial Sentron 1090 Al2O3, Int. Soci. Opt. Photon., 2000, 4078, p 801–808

    CAS  Google Scholar 

  32. 32.

    H.K. Liao, L.L. Chi, J.C. Chou, W.Y. Chung, T.P. Sun, and S.K. Hsiung, Study on pHpzc and surface potential of tin oxide gate ISFET, Mater. Chem. Physci., 1999, 59(1), p 6–11

    CAS  Article  Google Scholar 

Download references

Acknowledgments

All the people who contributed to the realization of this paper.

Author information

Affiliations

Authors

Contributions

Designing and methodology.

Corresponding author

Correspondence to Nadia Benattou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Benattou, N., Hamid, A., Fouatih, Z.A. et al. Effect of Temperature on the Performance of an Ion-Sensitive Field-Effect Transistor-Type Chemical Sensor with Aluminum Nitride Membrane. J. of Materi Eng and Perform 30, 585–595 (2021). https://doi.org/10.1007/s11665-020-05337-0

Download citation

Keywords

  • aqueous solution
  • chemical sensor ISFET
  • MOSFET
  • pH
  • potential
  • sensitivity
  • temperature
  • the AlN membrane
  • threshold voltage